

Real-time and Interactive Applications

Networked Systems (H) Lecture 7

Lecture Outline

- Real-time applications and the Internet
 - What is real-time traffic?
 - Requirements and constraints
 - Quality-of-service and quality-of-experience
- Interactive applications
 - Conferencing application architecture
 - Signalling, session description, and real-time media traffic
- Streaming applications
 - HTTP adaptive streaming for video on demand

Real-time Media Over The Internet

- What is real-time traffic?
- Requirements and constraints
- Quality of service vs. user experience

Real-time Traffic on the Internet

- Long history of real-time traffic over the Internet:
 - Telephony and voice-over-IP (VoIP), Internet radio, video conferencing, streaming video and TV, gaming, sensors, industrial control
 - Initial packet voice experiments → 1970s
 - Network Voice Protocol
 - Core standards defined → mid-1990s
 - SIP, SDP, RTP, RTSP, H.323
 - HTTP adaptive streaming → mid-2010s
 - MPEG DASH
- The design of the network and its transport protocols has evolved to support real-time media

https://datatracker.ietf.org/doc/rfc741/

What is Real-time Traffic?

- Defining characteristic: deadlines
 - The system fails if data is not delivered by a certain time
 - Railway signalling must deliver data to change a signal before train arrives hard real-time
 - Streaming video should deliver a new frame every 60th of a second, else the movie playback stutters **soft real-time**
 - What is the probability a deadline is missed? What are the consequences? Engineer accordingly no system is 100% reliable
 - Deadlines can be absolute or relative
 - Data must be delivered before a certain time absolute deadline
 - Data must be delivered periodically, within some time after the previous relative deadline
- Real-time is not necessarily high performance
 - It requires predictable timing, not necessarily high bandwidth or low latency

Requirements for Streaming Applications

- Video on demand has no absolute deadline, but needs regular data to prevent stalls once started
 - Acceptable if a takes a few seconds to start the video
 - Playback should be smooth once it starts
- Live video may have absolute deadlines
 - e.g., live sports playout
- Bit rate depends on desired quality
 - Higher quality is better, up to limits of display
 - Predictable, but lower, quality often preferred to more variable, but on average higher, quality
- For a given bit rate, trade-off between frame rate and frame quality
 - Smoother motion or higher resolution?

Requirements for Interactivity

- Requirements for interactive applications determined by task and human perception
 - Phone call or video conference
 - One-way mouth-to-ear delay ~150ms maximum for telephony
 - Video conferences want to lip-sync audio and video
 - Audio should be no more than 15ms ahead, or 45ms behind, video
 - Lecture style
 - Mostly unidirectional with occasional questions → can tolerate much higher latency
 - Distributed music performance
 - One-way latency ≪50ms desirable
 - Speed of sound: ~15ms to go from one side of a large orchestra to the other

ITU Recommendation G.114

ATSC IS-191 "Relative Timing of Sound and

Vision for Broadcast Operations", 2003

Real-time Traffic Must Be Loss Tolerant

- The Internet is a best effort packet network
 - Timing is not guaranteed depends on the amount of queueing on the path and on the path taken
 - Packets can be lost retransmissions take time, and may not arrive before the deadline
 - In some networks these effects can be significant with careful engineering they can be insignificant
- Real-time applications need to be loss tolerant

8

Real-time Traffic Has Limited Elasticity

- TCP congestion control adapts transmission speed to match available capacity
- Many transfers are elastic faster is better, but it doesn't matter what rate the congestion control selects
 - The application can adapt to any chosen rate
- Real-time traffic is inelastic
 - Media has a minimum rate, below which it cannot be used
 - e.g., a minimum quality level below which the speech is unintelligible, that needs a certain bit-rate to transmit
 - If the congestion control algorithm cannot sustain this rate if the network has insufficient capacity real-time traffic cannot be used
 - Media has a maximum rate → cannot consume more
 - Video limited by capture frame rate and resolution
 - Audio limited by capture sampling rate

Quality of Service (QoS) Guarantees

- It may be possible to reserve network capacity for real-time traffic
 - Using RSVP, MPLS, 5G network slicing, ...
 - Requires flow setup signalling, authorisation, and accounting
 - Need to tell the network what resources the real-time traffic requires
 - Need to demonstrate that sender is allowed to reserve these resources and can pay for the reserved capacity – reservations prevent other users from accessing the network, so have some cost
 - If the network has capacity for the traffic, reservations don't help
 - If the network does not have capacity, they allow the operator to discriminate in favour of customers who are willing to pay
 - Some customers care enough to pay for reserved capacity
 - Inter-domain reservations and accounting can be difficult to agree and implement
 - Many operators find it cheaper and easier to just buy more capacity, so no need to reserve

Quality of Experience (QoE)

- What ultimately matters is subjective quality of experience
 - Does the application meet user needs?
 - Does the application allow users to communicate effectively?
 - Does the application provide compelling entertainment?
- QoE is not a one-dimensional metric
 - What aspect of user experience are you evaluating?
 - e.g., "Does it sound good" is not the same as "Can you understand it?"
 - How does your metric relate to the task being performed?
 - Some aspects of user experience can be estimated from technical metrics
 - e.g., the ITU-T E-model for speech quality evaluation based on latency and packet loss
 - Some aspects are subjective and task dependent need user trials

Real-time Media Over The Internet

- What is real-time traffic?
- Requirements and constraints
- Quality of service vs. user experience

