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1 Introduction

The laboratory exercises for Networked Systems (H) will introduce you to network programming in C using the
Berkeley Sockets API, and help you understand the operation and structure of the network. The exercises will help
you practice C programming, building on the Systems Programming (H) course, and introduce network programming
in C. Other exercises will illustrate key points in the operation of the network. The laboratory exercises are intended
to complement the material covered in the lectures. Some expand on the lectures to give you broader experience in
a particular subject. Others exercises cover material, such as network programming in C, that’s better taught by
doing than by lecturing.

This exercise explores the performance of TCP connection establishment, to complement the material in Lecture 2.
This is a formative exercise, and is not assessed.

2 Formative Exercise 2: Client-server Connection Establishment

A TCP connection starts with a three-way handshake between client and server (SYN—SYN+ACK—ACK), before
it starts to send data packets. As discussed in Lecture 2, the network round-trip time (RTT) can be a significant
performance factor in connection establishment, and in the performance of client-server applications. This exercise
explores the timing and performance of TCP connection establishment and data transfer.

2.1 Basic HTTP Client

Make a copy of the hello_client.c program you wrote in Laboratory Exercise 1, and call it http_connect.c.
Modify this program as follows:

* The http_connect.c program should connect to port 80 of the server, rather than port 5000 (or whatever
port you chose previously). Port 80 is the port used by HTTP web servers.

» The http_connect.c program should send the following text to the server, in place of the simple “Hello,
World!” message that was sent before:

GET / HTTP/1.1\r\nHost: %s\r\nConnection: close\r\n\r\n

The %s should be replaced by the name of the server to which the program is making a connection, and \r
and \n are the C escape characters representing a carriage return and newline (hint: use sprintf() to print
this into a string). This is a minimal HTTP/1.1 request to fetch the main page from a web server.

« After sending the data, your http_connect. c program should enter a loop where it reads and prints the data
received from the server. This should continue until there is no more data to read, and the server closes the
connection. A recv() call on the socket file descriptor representing the connection will return ® when the
connection is closed. Be careful to print the data without buffer overflow (hint: make sure to add a terminating
‘\®’ byte to the data retrieved by recv () before passing it to any function that expects a C string).



Test your program by using it to retrieve, and print, the main pages from several web sites. The response returned
by a web server should comprise two parts. First will be a header, starting HTTP/1.1 200 OK for a successful
request, and continuing with several header lines. This will be followed by a blank line, then the HTML content of
the page.

As an example, if your program is working correctly, then running “. /http_connect www.gla.ac.uk” will print
something like the following output:

HTTP/1.1 301 Moved Permanently

Date: Fri, 07 Jan 2022 13:03:48 GMT

Server: Apache

Location: https://www.gla.ac.uk/
Content-Length: 230

Connection: close

Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">

<html><head>

<title>301 Moved Permanently</title>

</head><body>

<h1>Moved Permanently</hl>

<p>The document has moved <a href="https://www.gla.ac.uk/">here</a>.</p>
</body></html>

The header HTTP/1.1 301 Moved Permanently is a redirect header, signalling that the page has moved. The
other header lines, ending in the Content-Type: line, provide further information about the page. The Location:
header is a machine readable description of where the page has moved to, in this case to the HTTPS version of the
site. The headers are followed by a blank line, then the HTML page. In this case, the HTML page is a placeholder
document that says the page has moved.

Also try using your http_connect.c program to retrieve a longer web page, to make sure it works with pages
that need more than one call to the recv () function to retrieve. Running “. /http_connect neverssl.com” will
retrieve a non-obfuscated static HTML site. If retrieved correctly the content will end with a </html> tag on a line of
its own.

2.2 Timing TCP Connection Establishment

Once your http_client.c program is successfully retrieving the HTML source of web pages, modify it to record
the time immediately before, and immediately after, it makes the connect () call. The clock_gettime() system
call can be used to record the time. Store both values in variables, and print them after the connect () call has
completed:

#include <time.h>

struct timespec before_connect;
struct timespec after_connect;

clock_gettime (CLOCK_MONOTONIC, &before_connect);

if (connect(fd, ai->ai_addr, ai-»ai_addrlen) == -1) {
close(fd);
continue; // Try the next address

}

clock_gettime (CLOCK_MONOTONIC, &after_connect);
printf("before: %1d.%091d\n", (long) before_connect.tv_sec, before_connect.tv_nsec);
printf(" after: %1d.%091d\n", (long) after_connect.tv_sec, after_connect.tv_nsec);



The times are in seconds, and nanoseconds, since 1 January 1970 (as of January 2023, it is just over 1.6 billion
seconds since 1 January 1970). Read the documentation for the clock_gettime () function for details.

Run your program for several websites, located in different parts of the world, to see how long the connect ()
function takes to complete. That is, subtract the before time from the after time, to find the round-trip time for the
connection establishment. How do the times you get compare to the round-trip time examples shown in the lecture?
Can you explain any differences?

2.3 Timing TCP Downloads

Modify your http_connect.c program to record the time, using the clock_gettime() function, immediately
before it sends the request to the server to retrieve the web page using the send () call, and immediately after
each call to recv(). Remove the calls that print data returned from the server (since printing the data will take long
enough to disrupt the results) and instead print the values retrieved from the clock_gettime () calls.

How long does it take to send the request and retrieve the first part of the response? That is, what is the difference
between the timestamp that is returned after the first recv() call, and that returned just before the send () call.
How does it compare to the time taken to connect?

How does the time taken for each subsequent recv() call compare to the time taken for the first recv() call?
That is, if you subtract the time recorded after the first recv() from the time recorded after second recv() call,
how do they differ from the times between the first recv() and the send () ? Similarly, how does the time taken for
subsequent pairs of recv() calls compare. Can you explain any differences you see?

2.4 Comparing TCP Connection Timing

Many DNS names resolve to more than one IP address, to allow for load balancing across different servers, and to
allow services to be available via both IPv4 and IPv6. The getaddrinfo () call performs a DNS lookup to find the
IP addresses that a given DNS name resolves to.

Modify your http_connect.c program, so that rather than looping through the set of IP addresses returned by the
getaddrinfo() call and sending the HTTP request to only the first address that successfully connects, it rather
connects to each address of the server in turn, measuring the connection latency and HTTP performance for each.
That is, rather than break out of the for loop iterating through the list of IP addresses of the server on a successful
connection, instead connect to each address, measure how long the connection and download took, close the
connection, then continue to try to connect to the next available address for the server.

Do you observe differences in timing when connecting to the different IP addresses of a server? That is, for those
addresses that you can connect to, are some faster (i.e., have a lower RTT or download the content faster) than
others? For those where the connection fails, how does the time taken to fail to connect compare to the time taken
to connect? Are there any obvious differences in performance between IPv4 and IPv6 connections?

3 Discussion

This is a formative exercise. It is not assessed, and you do not need to submit your code or results. The goals are
(i) to give further practise in C programming; and (ii) to complement the material covered in Lecture 2. Discuss the
behaviour you see with the lecturer or lab demonstrators, to ensure you understand the timing characteristics of
TCP connections, and the impact of the round-trip time on TCP performance.
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