
Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

Design Patterns for
Asynchronous Code

1

• Compose Future values

• Avoid blocking I/O

• Avoid long-running computations

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

Compose Future Values

• async functions should be small, limited scope

• Perform a single well-defined task:
• Read and parse a file

• Read, process, and respond to a network request

• Rust provides combinators that can combine Future values, to produce a new
Future:

• for_each(), and_then(), read_exact(), select()

• Can ease composition of asynchronous functions – but can also obfuscate

2

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

Avoid Blocking Operations

• Asynchronous code multiplexes I/O operations on single thread
• Provides asynchronous aware versions of I/O operations

• File I/O, network I/O (TCP, UDP, Unix sockets)

• Non-blocking, return Future values that interact with the runtime

• Does not interact well with blocking I/O
• A Future that blocks on I/O will block entire runtime

• Programmer discipline required to ensure asynchronous and blocking I/O are not
mixed within a code base
• Including within library functions, etc.

3

Read → AsyncRead

Write → AsyncWrite

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

Avoid Long-running Computations

• Control passing between Future values is explicit

• await calls switch control back to the runtime

• Next runnable Future is then scheduled

• A Future that doesn’t call await, and instead performs some long-running computation, will
starve other tasks

• Programmer discipline required to spawn separate threads for long-running
computations
• Communicate with these via message passing – that can be scheduled within a Future

4

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

An Asynchronous Future?

5

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

When to use Asynchronous I/O?

• async/await restructure code to efficiently multiplex large numbers of I/O operations
on a single thread
• Gives a very natural programming model when each task is I/O bound

• Code to perform asynchronous, non-blocking, I/O is structured very similarly to code that uses
blocking I/O operations

• Runtime can schedule many tasks can run concurrently on a single thread

• Each task is largely blocked awaiting I/O – little overheads

6

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

When to use Asynchronous I/O?

• async/await restructure code to efficiently multiplex large numbers of I/O operations
on a single thread
• Problematic with blocking operations

• If a task performs a blocking operation, it locks the entire runtime – all potentially blocking calls must
be updated to use asynchronous I/O operations

• Potential to fragment the library ecosystem

• Problematic with long-running computations
• Long-running computations starve other tasks of CPU time – runtime only switches between tasks

when an asynchronous operation is started

• Need to insert context switch calls – isn’t this just cooperative multitasking reimagined?
• Windows 3.1, MacOS System 7

7

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

Performance of Asynchronous I/O

• Do you really need asynchronous I/O?
• Threads are more expensive than async functions and tasks in a runtime

• But threads are not that expensive – a properly configured modern machine can run
thousands of threads
• ~2,200 threads running on the Core i5 laptop these slides were prepared on, in normal use

• Varnish web cache (https://varnish-cache.org): “it’s common to operate with 500 to 1000 threads
minimum” but they “rarely recommend running with more than 5000 threads”

• Unless you’re doing something very unusual you can likely just spawn a thread, or use a pre-
configured thread pool, and perform blocking I/O – and communicate using channels, even if this
means spawning thousands of threads

• Asynchronous I/O can give a performance benefit
• But this performance benefit will usually be small

• Choose asynchronous programming because you prefer the programming style, accepting
that it will often not significantly improve performance

8

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://csperkins.org/
https://varnish-cache.org
https://varnish-cache.org

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

Summary

9

• Blocking I/O
• Multi-threading → overheads

• select() → complex

• Coroutines and asynchronous code

• Is it worth it?

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://csperkins.org/

