
Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

async and await

1

• Coroutines and asynchronous code

• Runtime support requirements

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

Coroutines and Asynchronous Code

• Aims to provide language and run-time support for I/O multiplexing on a single thread,
in a more natural style

• Runtime schedules async functions on a thread pool, yielding to other code on
await calls → low-overhead concurrent I/O

2

async fn read_exact<T: AsyncRead>(input: &mut T, buf: &mut [u8]) -> Result<(), std::io::Error> {
 let mut cursor = 0;
 while cursor < buf.len() {
 cursor += input.read(&mut buf[cursor..]).await?;
 }
}

fn read_exact<T: Read>(input: &mut T, buf: &mut [u8]) -> Result<(), std::io::Error> {
 let mut cursor = 0;
 while cursor < buf.len() {
 cursor += input.read(&mut buf[cursor..])?;
 }
}

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

Programming Model

3

• Structure I/O-based code as a set of concurrent coroutines that accept data from I/O
sources and yield in place of blocking

What is a coroutine?

def countdown(n):
 while n > 0:
 yield n
 n -= 1

>>> for i in countdown(5):
... print i,
...
5 4 3 2 1
>>>

A generator yields a sequence of values:

A function that can repeatedly run, yielding a sequence of values, while maintaining internal state

Calling countdown(5) produces a generator object. The for loop protocol calls next() on that
object, causing it to execute until the next yield statement and return the yielded value.

→ Heap allocated; maintains state; executes only in response to external stimulus

Based on: http://www.dabeaz.com/coroutines/Coroutines.pdf

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://csperkins.org/
http://www.dabeaz.com/coroutines/Coroutines.pdf
http://www.dabeaz.com/coroutines/Coroutines.pdf

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

What is a coroutine?

Programming Model

4

A coroutine more generally consumes and yields values:

The coroutines executes in response to
next() or send() calls

Calls to next() make it execute until it next
call yield to return a value

Calls to send() pass a value into the
coroutine, to be returned by (yield)

• Structure I/O-based code as a set of concurrent coroutines that accept data from I/O
sources and yield in place of blocking

def grep(pattern):
 print(F“Looking for {pattern}”)
 while True:
 line = (yield)
 if pattern in line:
 print line

>>> g = grep("python")  
>>> g.next()
Looking for python  
>>> g.send("Yeah, but no, but yeah, but no")  
>>> g.send("A series of tubes")  
>>> g.send("python generators rock!")  
python generators rock!  
>>>

Based on: http://www.dabeaz.com/coroutines/Coroutines.pdf

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://csperkins.org/
http://www.dabeaz.com/coroutines/Coroutines.pdf
http://www.dabeaz.com/coroutines/Coroutines.pdf

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

Programming Model

5

• Structure I/O-based code as a set of concurrent coroutines that accept data from I/O
sources and yield in place of blocking

What is a coroutine?

A coroutine is a function that executes concurrently to – but not in parallel with – the rest of the code

It is event driven, and can accept and return values

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

Programming Model

• Structure I/O-based code as a set of concurrent coroutines that accept data from I/O
sources and yield in place of blocking
• An async function is a coroutine

• Blocking I/O operations are labelled in the code – await – and cause control to pass to another
coroutine while the I/O is performed

• Provides concurrency without parallelism
• Coroutines operate concurrently, but typically within a single thread

• await passes control to another coroutine, and schedules a later wake-up for when the awaited
operation completes

• Encodes down to a state machine with calls to select(), or similar

• Mimics structure of code with multi-threaded I/O – within a single thread

6

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

async Functions

• An async function is one that can act as a coroutine
• It is executed asynchronously by the runtime

• Widely supported – Python 3, JavaScript, C#, Rust, …

• Main program must trigger asynchronous execution by the runtime:

• Starts asynchronous polling runtime, runs until specified async function completes

• Runtime drives async functions to completion and handles switching between coroutines

7

#!/usr/bin/env python3

import asyncio

async def fetch_html(url: str, session: ClientSession) -> str:
 resp = await session.request(method="GET", url=url)
 html = await resp.text()
 return html
…

asyncio.run(async function)

async tag on function

yield → await

But essentially a coroutine

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

await Future Results

• An await operation yields from the coroutine
• Triggers I/O operation – and adds corresponding file descriptor to set polled by the runtime

• Puts the coroutine in queue to be woken by the runtime, when file descriptor becomes ready

• If another coroutine is ready to execute then schedule wake-up once the I/O completes, and
pass control passes to the other coroutine; else runtime blocks until either this, or some
other, I/O operation becomes ready

• At some later time the file descriptor becomes ready and the runtime reschedules the
coroutine – the I/O completes and the execution continues

8

#!/usr/bin/env python3

import asyncio

async def fetch_html(url: str, session: ClientSession) -> str:
 resp = await session.request(method="GET", url=url)
 html = await resp.text()
 return html
…

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

async and await programming model

• Resulting asynchronous code should follow structure of synchronous (blocking) code:

• Annotations (async, await) indicate asynchrony, context switch points
• Compiler and runtime work together to generate code that can be executed in fragments

when I/O operations occur
9

async fn read_exact<T: AsyncRead>(input: &mut T, buf: &mut [u8]) -> Result<(), std::io::Error> {
 let mut cursor = 0;
 while cursor < buf.len() {
 cursor += input.read(&mut buf[cursor..]).await?;
 }
}

fn read_exact<T: Read>(input: &mut T, buf: &mut [u8]) -> Result<(), std::io::Error> {
 let mut cursor = 0;
 while cursor < buf.len() {
 cursor += input.read(&mut buf[cursor..])?;
 }
}

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

Runtime Support

• Asynchronous code needs runtime support to execute the coroutines and poll the I/O
sources for activity

• An async function that returns data of type T compiles to a regular function that
returns impl Future<Output=T>

• i.e., it returns a Future value that represents a value that will become available later

• The runtime continually calls poll() on Future values until all are Ready

• A future returns Ready when complete, Pending when blocked on awaiting I/O

• Calling tokio::run(future) starts the runtime

• Well supported in Python and JavaScript – runtime for Rust is experimental: https://tokio.rs/

10

pub trait Future {
 type Output;
 fn poll(self: Pin<&mut Self>, lw: &LocalWaker) -> Poll<Self::Output>;
}

pub enum Poll<T> {
 Ready(T),
 Pending,
}

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://csperkins.org/
https://tokio.rs/
https://tokio.rs/

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

async and await

11

• Coroutines and asynchronous code

• Runtime support requirements

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://csperkins.org/

