
Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow | This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-nd/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Coroutines and Asynchronous Programming

Advanced Systems Programming (H/M)

Lecture 8

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

Lecture Outline

• Motivation

• Coroutines, async, and await

• Design patterns for asynchronous code

2

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

Motivation

3

• How to overlap I/O and computation?

• Multi-threading

• Non-blocking I/O and select()

• Is there a better way?

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

Blocking I/O

• Desirable to perform I/O concurrently to other operations

• I/O operations are slow

• Need to wait for network, disk, etc. – operations can take millions of cycles

• I/O operations block the thread

• Disrupts the user experience and prevents other computations

• Want to overlap I/O and computation

• Want to allow multiple concurrent I/O operations

4

fn read_exact<T: Read>(input: &mut T, buf: &mut [u8]) -> Result<(), std::io::Error> {
 let mut cursor = 0;
 while cursor < buf.len() {
 cursor += input.read(&mut buf[cursor..])?;
 }
}

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

Blocking I/O using Multiple Threads (1/2)
• Traditionally solved by moving blocking operations into separate

threads:

• Spawn dedicated threads to perform I/O operations concurrently

• Re-join main thread/pass back result as message once complete

• Advantages:

• Simple

• No new language or runtime features

• Don’t have to change the way we do I/O

• Do have to move I/O to a separate thread, communicate and synchronise

• Concurrent code can run in parallel if the system has multiple cores

• Safe, if using Rust, due to ownership rules preventing data races

5

fn main() {
 …
 let (tx, rx) = channel();
 thread::spawn(move|| {
 …perform I/O…
 tx.send(results);
 });
 …
 let data = rx.recv();
 …
}

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

Blocking I/O using Multiple Threads (2/2)
• Traditionally solved by moving blocking operations into separate

threads:

• Spawn dedicated threads to perform I/O operations concurrently

• Re-join main thread/pass back result as message once complete

• Disadvantages:

• Complex

• Requires partitioning the application into multiple threads

• Resource heavy

• Each thread has its own stack

• Context switch overheads

• Parallelism offers limited benefits for I/O

• Threads performing I/O often spend majority of time blocked

• Wasteful to start a new thread that spends most of its time doing nothing

6

fn main() {
 …
 let (tx, rx) = channel();
 thread::spawn(move|| {
 …perform I/O…
 tx.send(results);
 });
 …
 let data = rx.recv();
 …
}

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

Non-blocking I/O and Polling (1/4)

• Blocking I/O using threads is problematic:

• Threads provide concurrent I/O abstraction, but with high overhead

• Multithreading can be inexpensive → Erlang

• But has high overhead on general purpose operating systems

• Higher context switch overhead due to security requirements

• Higher memory overhead due to separate stack

• Higher overhead due to greater isolation, preemptive scheduling

• Limited opportunities for parallelism with I/O bound code

• Threads can be scheduled in parallel, but to little benefit unless CPU bound

7

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

Non-blocking I/O and Polling (2/4)

• Lightweight alternative: multiplex I/O operations within a single thread

• I/O operations complete asynchronously – why have threads block for them?

• Provide a mechanism to start asynchronous I/O and poll the kernel for I/O events – all within
a single application thread

• Start an I/O operation

• Periodically poll for progress of the I/O operation

• If new data is available, a send operation has completed, or an error has occurred, then invoke the
handler for that operation

8

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

Non-blocking I/O and Polling (3/4)

• Mechanisms for polling I/O for readiness

• Berkeley Sockets API select() function in C

• Or higher-performance, but less portable, variants such as epoll (Linux/Android), kqueue (FreeBSD/
macOS/iOS), I/O completion ports (Windows)

• Libraries such as libevent, libev, or libuv – common API for such system services

• Rust mio library

• Key functionality:

• Trigger non-blocking I/O operations: read() or write() to files, sockets, etc.

• Poll kernel to check for readable or writeable data, or if errors are outstanding

• Efficient and only requires a single thread, but requires code restructuring to avoid blocking

9

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

Non-blocking I/O and Polling (4/4)

• Berkeley Sockets API select() function in C:

10

FD_ZERO(&rfds);
FD_SET(fd1, &rfds);
FD_SET(fd2, &rfds);

tv.tv_sec = 5; // Timeout
tv.tv_usec = 0;

int rc = select(1, &rfds, &wfds, &efds, &tv);
if (rc < 0) {
 … handle error
} else if (rc == 0) {
 … handle timeout
} else {
 if (FD_ISSET(fd1, &rfds)) {
 … data available to read() on fd1
 }
 if (FD_ISSET(fd2, &rfds)) {
 … data available to read() on fd2
 }
 …
}

select() polls a set of file descriptors for their
readiness to read(), write(), or to deliver errors

FD_ISSET() checks particular file descriptor for
readiness after select()

Low-level API well-suited to C programming; other
libraries/languages provide comparable features

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

Alternatives to Non-blocking I/O?

• Non-blocking I/O can be highly efficient

• Single thread can handle multiple I/O sources (sockets, file descriptors) at once

• But – requires significant re-write of application code

• Non-blocking I/O

• Polling of I/O sources

• Re-assembly of data

• Can we get the efficiency of non-blocking I/O in a more usable manner?

• Maybe – coroutines and asynchronous code

11

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

Motivation

12

• How to overlap I/O and computation?

• Multi-threading

• Non-blocking I/O and select()

• Is there a better way?

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

