
Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

Practical Factors

1

• Real-time Garbage Collection

• Memory Overheads

• Interaction with Virtual Memory

• Garbage Collection for Weakly-Typed
Languages

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

Real-time Garbage Collection
• Real-time collectors built from incremental collectors

• Schedule an incremental collector as a periodic task

• Runtime allocated determines amount of garbage that can be
collected in each period

• The amount of garbage that can be collected can be measured:
how fast can the collector scan memory (and copy objects, if a
copying collector)

• The programmer must bound the amount of garbage generated
to within the capacity of the collector

• Hard real-time systems must always stay within the bounds of the collector

• Soft real-time systems meet statistical bounds

2

Bacon et al., “A real-time garbage collector with low
overhead and consistent utilization”. ACM Symposium on
Principles of Programming Languages, New Orleans, LA,

USA, January 2003. DOI: 10.1145/604131.604155

A Real-time Garbage Collector
with Low Overhead and Consistent Utilization

David F. Bacon
dfb@watson.ibm.com

Perry Cheng
perryche@us.ibm.com

V.T. Rajan
vtrajan@us.ibm.com

IBM T.J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

ABSTRACT
Now that the use of garbage collection in languages like Java is be-
coming widely accepted due to the safety and software engineering
benefits it provides, there is significant interest in applying garbage
collection to hard real-time systems. Past approaches have gener-
ally suffered from one of two major flaws: either they were not
provably real-time, or they imposed large space overheads to meet
the real-time bounds. We present a mostly non-moving, dynami-
cally defragmenting collector that overcomes both of these limita-
tions: by avoiding copying in most cases, space requirements are
kept low; and by fully incrementalizing the collector we are able to
meet real-time bounds. We implemented our algorithm in the Jikes
RVM and show that at real-time resolution we are able to obtain
mutator utilization rates of 45% with only 1.6–2.5 times the ac-
tual space required by the application, a factor of 4 improvement in
utilization over the best previously published results. Defragmen-
tation causes no more than 4% of the traced data to be copied.

General Terms
Algorithms, Languages, Measurement, Performance

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]: Real-
time and embedded systems; D.3.2 [Programming Languages]:
Java; D.3.4 [Programming Languages]: Processors—Memory
management (garbage collection)

Keywords
Read barrier, defragmentation, real-time scheduling, utilization

1. INTRODUCTION
Garbage collected languages like Java are making significant in-

roads into domains with hard real-time concerns, such as automo-
tive command-and-control systems. However, the engineering and
product life-cycle advantages consequent from the simplicity of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

POPL’03, January 15–17, 2003, New Orleans, Louisiana, USA.
Copyright c 2003 ACM 1-58113-628-5/03/0001 $5.00.

programming with garbage collection remain unavailable for use in
the core functionality of such systems, where hard real-time con-
straints must be met. As a result, real-time programming requires
the use of multiple languages, or at least (in the case of the Real-
Time Specification for Java [9]) two programming models within
the same language. Therefore, there is a pressing practical need
for a system that can provide real-time guarantees for Java without
imposing major penalties in space or time.

We present a design for a real-time garbage collector for Java,
an analysis of its real-time properties, and implementation results
that show that we are able to run applications with high mutator
utilization and low variance in pause times.

The target is uniprocessor embedded systems. The collector is
therefore concurrent, but not parallel. This choice both complicates
and simplifies the design: the design is complicated by the fact that
the collector must be interleaved with the mutators, instead of being
able to run on a separate processor; the design is simplified since
the programming model is sequentially consistent.

Previous incremental collectors either attempt to avoid overhead
and complexity by using a non-copying approach (and are there-
fore subject to potentially unbounded fragmentation), or attempt
to prevent fragmentation by performing concurrent copying (and
therefore require a minimum of a factor of two overhead in space,
as well as requiring barriers on reads and/or writes, which are costly
and tend to make response time unpredictable).

Our collector is unique in that it occupies an under-explored por-
tion of the design space for real-time incremental collectors: it
is a mostly non-copying hybrid. As long as space is available, it
acts like a non-copying collector, with the consequent advantages.
When space becomes scarce, it performs defragmentation with lim-
ited copying of objects. We show experimentally that such a design
is able to achieve low space and time overhead, and high and con-
sistent mutator CPU utilization.

In order to achieve high performance with a copying collector,
we have developed optimization techniques for the Brooks-style
read barrier [10] using an “eager invariant” that keeps read barrier
overhead to 4%, an order of magnitude faster than previous soft-
ware read barriers.

Our collector can use either time- or work-based scheduling.
Most previous work on real-time garbage collection, starting with
Baker’s algorithm [5], has used work-based scheduling. We show
both analytically and experimentally that time-based scheduling is
superior, particularly at the short intervals that are typically of in-
terest in real-time systems. Work-based algorithms may achieve
short individual pause times, but are unable to achieve consistent
utilization.

The paper is organized as follows: Section 2 describes previ-

285

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://csperkins.org/
https://dx.doi.org/10.1145/604131.604155
https://dx.doi.org/10.1145/604131.604155
https://dx.doi.org/10.1145/604131.604155

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

Memory Overheads

• Garbage collection trades ease-of-use for predictability and overhead

• Garbage collected programs will use significantly more memory than correctly
written programs with manual memory management
• Many copying collectors maintain two semispaces, so double memory usage

• But – many programs with manual memory management are not correct

3

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

Interaction with Virtual Memory

• Virtual memory subsystems page out unused data in an LRU manner

• Garbage collector scans objects, paging data back into memory

• Leads to thrashing if the working set of the garbage collector larger than memory
• Open research issue: combining virtual memory with garbage collector

4

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

Garbage Collection for Weakly-typed Languages

• Collectors rely on being able to identify and follow pointers, to determine what is a live
object – they rely on strongly-typed languages

• Weakly typed languages, such as C, can cast any integer to a pointer, and perform
pointer arithmetic
• Implementation-defined behaviour, since pointers and integers are not guaranteed to be the

same size

• Difficult, but not impossible, to write a garbage collector for C:
• Need to be conservative: any memory that might be a pointer must be treated as one

• Boehm-Demers-Weiser collector can be used for C and C++ (http://www.hboehm.info/gc/) – works for
strictly conforming ANSI C code, but beware that much code is not conforming

• Other weakly typed languages may suffer from similar problems
• Strongly typed, but dynamic, languages, such as Python, not an issue

5

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://csperkins.org/
http://www.hpl.hp.com/personal/Hans_Boehm
http://www.cs.cornell.edu/annual_report/00-01/bios.htm#demers
http://www-sul.stanford.edu/weiser/
http://www.hboehm.info/gc/
http://www.hpl.hp.com/personal/Hans_Boehm
http://www.cs.cornell.edu/annual_report/00-01/bios.htm#demers
http://www-sul.stanford.edu/weiser/
http://www.hboehm.info/gc/

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

Memory Management Trade-offs

• Rust pushes memory management complexity onto the programmer
• Predictable run-time performance, low run-time overheads

• Uniform resource management framework, including memory

• Limits the programs that may be expressed – matches common patterns in good C code

• Garbage collection imposes run-time costs and complexity, simpler for programmer

6

Run-time Compile-time

Less Predictable More Predictable

Complexity

Performance

Garbage Collected Region-based

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

Summary

7

• Garbage collection
• Mark-sweep

• Mark-compact

• Copying collectors

• Generational algorithms

• Incremental algorithms

• Real-time garbage collection

• Practical factors

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://csperkins.org/

