
Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

Generational and
Incremental Garbage
Collection

1

• Object Lifetimes

• Copying Generational Collectors

• Incremental Garbage Collection

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

Object Lifetimes

• Most objects have short time; a small percentage live much longer
• This seems to be generally true, no matter what programming language is considered,

across numerous studies

• Although, obviously, different programs and different languages produce varying amount of
garbage

• Implications:
• When the garbage collector runs, live objects will be in a minority

• Statistically, the longer an object has lived, the longer it is likely to live

• Can we design a garbage collector to take advantage?

2

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

Copying Generational Collectors (1/4)
• In a generational garbage collector, the heap is split into

regions for long-lived and young objects
• Regions holding young objects are garbage collected more

frequently

• Objects are moved to the region for long-lived objects if they’re
still alive after several collections

• More sophisticated approaches may have multiple generations,
although the gains diminish rapidly with increasing numbers of
generations

• Example: stop-and-copy using semispaces with two
generations
• All allocations occurs in the younger generation’s region of the

heap

• When that region is full, collection occurs as normal

• …

3

Younger Generation

ROOT

32

Fig. O. A generational copying garbage collector before garbage collection.

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

Copying Generational Collectors (2/4)
• …

• Objects are tagged with the number of collections of the younger
generation they have survived; if they’re alive after some
threshold, they’re copied to the older generation’s space during
collection

• Eventually, the older generation’s space is full, and is collected
as normal

• Note: not to scale: older generations are generally much larger
than the younger, as they’re collected much less often

4

First (New)
Generation
Memory

Second

Memory

CO 4~

Fig. 11. Memory use in a generational copy collector with semispaces for each generation.

33

v~.. r--

%

. .2 i

~ J

Younger Generation

ROOT
SET %

f
t

Older Generation

Fig . 10. Generational collector after garbage collection.

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

Copying Generational Collectors (3/4)

• Young generation must collected independent of long-lived generation

• But – there may be references between generations
• References from young objects to long-lived objects

• Straight-forward – most young objects die before the long-lived objects are collected

• Treat the younger generation objects as part of the root set for the long-lived generation, when
collection of the long-lived generation is needed

• References from long-lived objects to young objects:
• Problematic, since requires scan of long-lived generation to detect

• Maybe use indirection table (“pointers-to-pointers”) for references from long-lived generation to young
generation

• The indirection table forms part of the root set of the younger generation

• Moving objects in younger generation requires updating indirection table, but not long-lived objects

• Long-lived objects are collected infrequently, and may keep younger objects alive longer than expected

5

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

Copying Generational Collectors (4/4)

• Variations on copying generational collectors are widely used
• E.g., the HotSpot JVM uses a generational garbage collector

• Copying generational collectors are efficient:
• Cost of collection is generally proportional to number of live objects

• Most objects don’t live long enough to be collected; those that do are moved to a more rarely
collected generation

• Longer-lived generation must eventually be collected; this can be very slow

6

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

Incremental Garbage Collection (1/5)

• Preceding discussion has assumed the collector “stops-the-world” when it runs
• Problematic for interactive or real-time applications

• Desire a collector that can operate incrementally
• Interleave small amounts of garbage collection with small runs of program execution

• Implication: the garbage collector can’t scan the entire heap when it runs; must scan a
fragment of the heap each time

• Problem: the program (the “mutator”) can change the heap between runs of the garbage
collector

• Need to track changes made to the heap between garbage collector runs; be conservative
and don’t collect objects that might be referenced – can always collect on the next complete
scan

7

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

Incremental Garbage Collection (2/5)

• Tricolour marking: each object is labelled with a colour:
• White – not yet checked

• Grey – live, but some direct children not yet checked

• Black – live

• Basic incremental collector operation:
• Garbage collection proceeds with a wavefront of grey objects, where the collector is checking

them, or objects they reference, for liveness

• Black objects behind are behind the wavefront, and are known to be live

• Objects ahead of the wavefront, not yet reached by the collection, are white; anything still
white once all objects have been traced is garbage

• No direct pointers from black objects to white – any program operation that will create such a
pointer requires coordination with the collector

8

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

Incremental Garbage Collection (3/5)
• Program and collector must coordinate

• Garbage collector runs
• Object A scanned, known to be live → black

• Objects B and C are reachable via A, and are live, but some of
their children have not been scanned → grey

• Object D not checked → white

• Program runs, and swaps the pointers from A→C and
B→D such that A→D and B→C

• This creates a pointer from black to white

• Program must now coordinate with the collector, else
collection will continue, marking object B black and its
children grey, but D will not be reached since children
of A have already been scanned

9

23

A A

Before After

Fig. 7. A violation of the coloring invariant.

rather than their source. That is, if a pointer to a white object is copied into a black
object, that new copy of the pointer will be found. Conceptually, the black object (or
part of it) is reverted to grey when the mutator "undoes" the collector's traversal.
(Alternatively, the pointed-to object may be greyed immediately.) This ensures that
the traversal is updated in the face of mutator changes.

3.2 Baker's Incremental Copying.

The best-known real-time garbage collector is Baker's incremental copying scheme
[Bak78]. It is an adaptation of the simple copy collection scheme described in Sect. 2.5,
and uses a read barrier for coordination with the mutator. For the most part, the
copying of data proceeds in the Cheney (breadth-first) fashion, by advancing the scan
pointer through the unscanned area of tospace and moving any referred-to objects

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

Incremental Garbage Collection (4/5)
• Coordination strategies:

• Read barrier: trap attempts by the program to read pointers to
white objects, colour those objects grey, and then let program
continue

• Makes it impossible for the program to get a pointer to a white object, so
it cannot make a black object point to a white

• Write barrier: trap attempts to change pointers from black
objects to point to white objects

• Either then re-colour the black object as grey, or re-colour the white
object being referenced as grey

• The object coloured grey is moved onto the list of objects whose children
must be checked

10

23

A A

Before After

Fig. 7. A violation of the coloring invariant.

rather than their source. That is, if a pointer to a white object is copied into a black
object, that new copy of the pointer will be found. Conceptually, the black object (or
part of it) is reverted to grey when the mutator "undoes" the collector's traversal.
(Alternatively, the pointed-to object may be greyed immediately.) This ensures that
the traversal is updated in the face of mutator changes.

3.2 Baker's Incremental Copying.

The best-known real-time garbage collector is Baker's incremental copying scheme
[Bak78]. It is an adaptation of the simple copy collection scheme described in Sect. 2.5,
and uses a read barrier for coordination with the mutator. For the most part, the
copying of data proceeds in the Cheney (breadth-first) fashion, by advancing the scan
pointer through the unscanned area of tospace and moving any referred-to objects

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

Incremental Garbage Collection (5/5)

• Many variants on read- and write-barrier tricolour algorithms
• Performance trade-off differs depending on hardware characteristics, and on the way

pointers are represented

• Write barrier generally cheaper to implement than read barrier, as writes are less common in
most code

• There is a balance between collector operation and program operation
• If the program tries to create too many new references from black to white objects, requiring

coordination with the collector, the collection may never complete

• Resolve by forcing a complete stop-the-world collection if free memory is exhausted, or after
a certain amount of time

11

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

Generational and
Incremental Garbage
Collection

12

• Object Lifetimes

• Copying Generational Collectors

• Incremental Garbage Collection

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://csperkins.org/

