
Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow | This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-nd/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Garbage Collection

Advanced Systems Programming (H/M)

Lecture 6

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

Rationale

• Region-based memory management (→ lecture 5) is novel, trades program
complexity for predictable resource management

• Garbage collection widely implemented, but less predictable

• Need to understand garbage collector operation to understand the performance-
complexity trade-off

2

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

Lecture Outline
• Garbage collection algorithms

• Mark-sweep

• Mark-compact

• Copying collectors

• Generational collectors

• Incremental collectors

• Real-time garbage collection

• Practical factors

3

Uniprocessor Garbage Collection Techniques

Paul R. Wilson

University of Texas
Austin, Texas 78712-1188 USA

(wilson@cs.ut exas.edu)

Abstract. We survey basic garbage collection algorithms, and variations
such as incremental and generational collection. The basic algorithms in-
clude reference counting, mark-sweep, mark-compact, copying, and treadmill
collection. Incremental techniques can kccp garbage concction pause times
short, by interleaving small amounts of collection work with program execu-
tion. Generationalschemes improve efficiency and locality by garbage collect-
ing a smaller area more often, while exploiting typical lifetime characteristics
to avoid undue overhead from long-lived objects.

1 A u t o m a t i c S t o r a g e R e c l a m a t i o n

Garbage collection is the automatic reclamation of computer storage [Knu69, Coh81,
App91]. While in many systems programmers must explicitly reclaim heap memory
at some point in the program, by using a '~free" or "dispose" statement, garbage
collected systems free the programmer from this burden. The garbage collector's
function is to find data objects I that are no longer in use and make their space
available for reuse by the the running program. An object is considered garbage
(and subject to reclamation) if it is not reachable by the running program via any
path of pointer traversals. Live (potentially reachable) objects are preserved by the
collector, ensuring that the program can never traverse a "dangling pointer" into a
deallocated object.

This paper is intended to be an introductory survey of garbage collectors for
uniprocessors, especially those developed in the last decade. For a more thorough
treatment of older techniques, see [Knu69, Coh81].

1.1 M o t i v a t i o n

Garbage collection is necessary for fully modular programming, to avoid introducing
unnecessary inter-module dependencies. A routine operating on a data structure
should not have to know what other routines may be operating on the same structure,
unless there is some good reason to coordinate their activities. If objects must be
deallocated explicitly, some module must be responsible for knowing when olher
modules are not interested in a particular object.

1 We use the term object loosely, to include any kind of structured data record, such
as Pascal records or C structs, as well as full-fledged objects with encapsulation and
inheritance, in the sense of object-oriented programming.

P. R. Wilson, “Uniprocessor garbage
collection techniques”, Proceedings of the

International Workshop on Memory
Management, St. Malo, France, September

1992. DOI: 10.1007/BFb0017182

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://dx.doi.org/10.1007/BFb0017182
https://dx.doi.org/10.1007/BFb0017182

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

Basic Garbage Collection

4

• Mark-sweep

• Mark-compact

• Copying collectors

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

Garbage Collection

• Avoid problems of reference counting and complexity of compile-time ownership
tracking via garbage collection

• Explicitly trace through allocated objects, recording which are in use; dispose of unused

objects

• Moves garbage collection to be a separate phase of the program’s execution, rather than an
integrated part of an objects lifecycle

• Operation of the program (the mutator) and the garbage collector is interleaved

• Many tracing garbage collection algorithms exist:

• Basic garbage collectors

• Mark-sweep collectors

• Mark-compact collectors

• Copying collectors

• Generational garbage collectors

5

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

Mark-Sweep Collectors (1/4)

• Simplest automatic garbage collection scheme

• Two phase algorithm

• Distinguish live objects from garbage (mark)

• Reclaim the garbage (sweep)

• Non-incremental: program is paused to perform collection when memory becomes tight

6

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

Mark-Sweep Collectors (2/4)

• The marking phase: distinguishing live objects

• Determine the root set of objects, comprising:

• Any global variables

• Any variable allocated on the stack, in any existing stack frame

• Traverse the object graph staring at the root set to find other reachable objects

• Starting from the root set, follow pointers to other objects

• Follow every pointer in every object to systematically find all reachable objects

• May proceed either breadth-first or depth-first

• A cycle of objects that reference each other, but are not reachable from the root set, will not be marked

• Mark reachable objects as alive

• Set a bit in the object header, or in some separate table of live objects, to indicate that the object is

reachable

• Stop traversal at previously seen objects to avoid looping forever

7

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

Mark-Sweep Collectors (3/4)

• The sweep phase: reclaiming objects that no longer live

• Pass through entire heap once, examining each object for liveness

• If marked as alive, keep the object

• Otherwise, free the memory and reclaim the object’s space

• When objects are reclaimed, their memory is marked as available

• The system maintains a free list of blocks of unused memory

• New objects are allocated in now unused memory if they fit; or in not-yet-used memory
elsewhere on the heap

• Fragmentation is a potential concern – but no worse than using malloc()/free()

8

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

Mark-Sweep Collectors (4/4)

• Mark-sweep collectors are simple, but inefficient:

• Garbage collection is slow and has unpredictable duration

• Program is stopped while the collector runs

• Time to collect garbage is unpredictable, and depends on the number of live objects (time for the
marking phase) and size of the heap (time to sweep up unused objects)

• Unlike reference counting, mark-sweep garbage collection is slower if the program has lots of memory
allocated

• Garbage collection has no locality of reference

• Passing through the entire heap in unpredictable order disrupts operation of cache and virtual memory

subsystem

• Objects located where they fit, rather than where maintains locality of reference

• Fragmentation of free space is a concern

• Since objects are not moved, space may become fragmented, making it difficult to allocate large

objects even though space available overall

9

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

Mark-Compact Collectors (1/2)
• Goal: solve fragmentation problems and speed-up

allocation, compared to mark-sweep collectors

• Three logical phases:

• Traverse object graph, mark live objects

• Reclaim unreachable objects

• Compact live objects, moving them to leave contiguous
free space

• Reclaiming and compacting memory can be done in one
pass, but still touches the entire address space

10

Mark Reclaim Compact

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

Mark-Compact Collectors (2/2)
• Advantages:

• Solves fragmentation problems – all free space is in one
contiguous block

• Allocation is very fast – always allocating from the start of
the free block, so allocation is just incrementing pointer to
start of free space and returning previous value

• Disadvantages:

• Collection is slow, due to moving objects in memory, and

time taken is unpredictable

• Collection has poor locality of reference

• Collection is complex – needs to update all pointers to
moved objects

11

Mark Reclaim Compact

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

Copying Collectors (1/5)

• Copying collectors integrate traversal (marking) and copying phases into one pass

• All the live data is copied into one region of memory

• All the remaining memory contains garbage, or has not yet been used

• Similar to mark-compact, but more efficient

• Time taken to collect is proportional to the number of live objects

12

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

Copying Collectors (2/5)
• Stop-and-copy using semispaces:

• Divide the heap into two halves, each one a contiguous
block of memory

• Allocations made linearly from one half of the heap only

• Memory is allocated contiguously, so allocation is fast (as in the mark-

compact collector)

• No problems with fragmentation when allocating data of different sizes

• When an allocation is requested that won’t fit into the active
half of the heap, a collection is triggered

13

13

ROOT
t ' s ~ e w s

FROMSPACE TOSPACE

Fig. 3. A simple semispace garbage collector before garbage collection.

descendants. This means that there are no more reachable objects to be copied, and
the scavenging process is finished.

Actually, a slightly more complex process is needed, so that objects that are
reached by multiple paths are not copied to tospace multiple times. When an object
is transported to tospace, a forwarding pointer is installed in the old version of the
object. The forwarding pointer signifies that the old object is obsolete and indicates
where to find the new copy of the object. When the scanning process finds a pointer
into fromspace, the object it refers to is checked for a forwarding pointer. If it has
one, it has already been moved to tospace, so the pointer it has been reached by is
simply updated to point to its new location. This ensures that each live object is
transported exactly once, and that all pointers to the object are updated to refer to
the new copy.

Source: P. Wilson, “Uniprocessor garbage collection
techniques”, Proc IWMM’92, DOI 10.1007/BFb0017182

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

Copying Collectors (3/5)
• Stop-and-copy using semispaces:

• Collection stops execution of the program

• A pass is made through the active space, and all live
objects are copied to the other half of the heap

• Cheney algorithm is commonly used to make the copy in a single pass

• Anything not copied is unreachable, and is simply ignored (and will
eventually be overwritten by a later allocation phase)

• The program is then restarted, using the other half of the
heap as the active allocation region

• The role of the two parts of the heap (the two
semispaces) reverses each time a collection is
triggered

14

ROOT
SET

iii
0

FROMSPACE

14

TOSPACE

Fig. 4. Semispace collector after garbage collection.

Efficiency of Copying Collect ion. A copying garbage collector can be made ar-
bitrarily efficient if sufficient memory is available [Lar77, App87]. The work done at
each collection is proportional to the amount of live data at the time of garbage col-
lection. Assuming that approximately the same amount of data is live at any given
time during the program's execution, decreasing the frequency of garbage collections
will decrease the total amount of garbage collection effort.

A simple way to decrease the frequency of garbage collections is to increase the
amount of memory in the heap. If each semispace is bigger, the program will run
longer before filling it. Another way of looking at this is that by decreasing the
frequency of garbage collections, we are increasing the average age of objects at
garbage collection time. Objects that become garbage before a garbage collection
needn't be copied, so the chance that an object will n e v e r have to be copied is

Source: P. Wilson, “Uniprocessor garbage collection
techniques”, Proc IWMM’92, DOI 10.1007/BFb0017182

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

Copying Collectors (4/5)
• The Cheney Algorithm: breadth-first copying

• A queue is created, to hold the set of live objects to be copied

• The root set of objects, comprising global variables and all
stack allocated variables, is found and added to the queue

• Objects in the queue are examined in turn:

• Any unprocessed objects they reference are added to end of the queue

• The object in the queue is then copied into the other semispace, and the
original is marked as having been processed (pointers are updated as the
copy is made)

• Once the end of the queue is reached, all live objects have
been copied

15

15

ROOT A t

B

E

I I I

F
iI

t
I I

I i

i~ I!!!!ii!!!!!lli!!!!l J!!l
~ n B ~
Scan Free

Scan Free

Scan Free

a B~ c D ~
Scan Free

v)

Scan Free

Fig. 5. The Cheney algorithm of breadth-first copying.

Object
graph

Copying
queue

Source: P. Wilson, “Uniprocessor garbage collection
techniques”, Proc IWMM’92, DOI 10.1007/BFb0017182

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

Copying Collectors (5/5)

• Efficiency of copying collectors:

• Time taken for garbage collection depends on the amount of data copied, which depends on

the number of live objects

• Collection only happens when a semispace is full

• If most objects die young, can trade-off collection time vs. memory usage by
increasing the size of the semispaces

• A larger semispace takes longer to fill, so increases the how long objects need to live before

they’re copied

• If most objects die young, most aren’t copied

• Uses more memory, but spends less time copying data

16

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

Summary: Basic Garbage Collection

• Mark-sweep, mark-compact, and copying collectors have similar cost:

• Differ in where the cost is paid: at time of allocation or time of collection; in memory usage

or in processing time

• The mark-compact and copying algorithms move data, so cannot be used with
languages that cannot unambiguously identify pointers

• Can’t move an object, if you can’t be sure all pointers to it have been updated

17

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2020 University of Glasgow

Basic Garbage Collection

18

• Mark-sweep

• Mark-compact

• Copying collectors

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

