
Colin Perkins | https://csperkins.org/ | Copyright © 2018 | This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-nd/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Security Considerations

Networked Systems (H)
Lecture 9

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2018

Lecture Outline

• Pervasive traffic monitoring

• Confidentiality and authentication

• Securing network transport

• Writing secure code

2

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Network Monitoring and the Need for Encryption

3

Colin Perkins | https://csperkins.org/ | Copyright © 2018

Network Monitoring and the Need for Encryption

• Possible to intercept traffic on a network

• Many countries monitor traffic for legal reasons
• Much is desirable – good reasons for law enforcement to intercept some

traffic – but Edward Snowden showed pervasive monitoring widespread

• IETF consensus: “we cannot defend against the most nefarious actors  
while allowing monitoring by other actors no matter how benevolent some
might consider them to be, since the actions required of the attacker are
indistinguishable from other attacks”  
[RFC 7258 “Pervasive Monitoring is an Attack” – https://tools.ietf.org/html/rfc7258]

• Organisations may monitor traffic for business reasons
• “Your call may be monitored for quality and training purposes” – regulatory

requirements to be able to monitor some traffic

• To support network operations and trouble-shooting

• Malicious users may monitor traffic on a link
• For example, many Wi-Fi links have poor security allowing anyone on the

same Wi-Fi network to observe all traffic on that network

• Hacked routers may allow monitoring of backbone links

• Steal data and user credentials; identity theft; active attacks

4

Edward Snowden

[Moriarty and Morton, “Effect of Pervasive Encryption on Operators”,
https://tools.ietf.org/html/draft-mm-wg-effect-encrypt]

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://tools.ietf.org/html/rfc7258
https://tools.ietf.org/html/draft-mm-wg-effect-encrypt

Colin Perkins | https://csperkins.org/ | Copyright © 2018

Confidentiality

• Must encrypt data to achieve confidentiality

• Two basic approaches
• Symmetric cryptography

• Advanced Encryption Standard (AES)

• Public key cryptography
• The Diffie-Hellman algorithm

• The Rivest-Shamir-Adleman (RSA) algorithm

• Elliptic curve-based algorithms

• Complex mathematics – will not attempt to describe

5

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2018

Symmetric Cryptography

• Function converts plain text into cipher-text
• Fast – suitable for bulk encryption

• Cipher-text is binary data, and may need base64
encoding

• Conversation is protected by a secret key
• The same key is used to encrypt as is used to

decrypt

• Key must be kept secret, else security lost – a
problem: how to distribute the key?

6

“It was a bright cold day in April,
and the clocks were striking
thirteen.”

rX27qrhlM/Pd5UnkpqTuXnJBZecFl
bP5Xd8ouyAWgCLxZJUD951SaxusX5
bj0O2P9XkVGGHmmOqByZxu2pU+cCl
sERzuHKxc

DES Key

/DES Key

“It was a bright cold day in April,
and the clocks were striking
thirteen.”

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2018

Public Key Cryptography

• Key split into two parts:
• Public key – is widely distributed

• Private key – must be kept secret

• Encrypt using public key → need private
key to decrypt
• Public keys are published in a well known

directory → solves the key distribution problem

• Problem: very slow to encrypt and decrypt
<big blob of encrypted stuff>

“It was a bright cold day in April,
and the clocks were striking
thirteen.”

RSA Public key

/RSA Private key

“It was a bright cold day in April,
and the clocks were striking
thirteen.”

7

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2018

Hybrid Cryptography

• Use combination of public-key and symmetric cryptography for
security and performance
• Generate a random, ephemeral, session key that can be used with

symmetric cryptography

• Use a public-key system to securely distribute this session key – relatively
fast, since session key is small

• Encrypt the data using symmetric cryptography, keyed by the session key

• Example: Transport Layer Security (TLS) protocol used with HTTP

8

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2018

Authentication

• Encryption can ensure confidentiality – but how to tell if a message
has been tampered with?
• Use combination of a cryptographic hash and public key cryptography to

produce a digital signature

• Gives some confidence that there is no man-in-the-middle attack in progress

• Can also be used to prove origin of data

9

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2018

Cryptographic Hash Functions

• Generate a fixed length (e.g., 256 bit) hash code of an arbitrary
length input value
• Should not be feasible to derive input value from hash

• Should not be feasible to generate a message with the same hash as
another

• Examples:
• MD5 and SHA-1 (both are broken – do not use)

• SHA-2 (a.k.a., SHA-256)

10

SHA256(“It was a bright cold day in April, and the clocks were striking thirteen”)
= 0fc5c1f4082e697b211cdfa12479b4b3dd57c8da69c8904f5e0fc32499cf4245

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2018

Digital Signature Algorithms

• Generating a digital signature:
• Generate a cryptographic hash of the data

• Encrypt the hash with your private key to give a digital signature

• Verifying a digital signature:
• Re-calculate the cryptographic hash of the data

• Decrypt the signature using the public key, compare with the calculated hash
value → should match

11

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2018

Existing Secure Protocols

• Existing security protocols give confidentiality and authentication:
• IPSec – useful for VPNs

• Secure Sockets Layer (SSL) – obsolete and broken, use TLS instead

• Transport Layer Security (TLS v1.2 or later) – general purpose security for
TCP-based applications

• Datagram TLS – for securing UDP-based applications

• Secure RTP – for securing interactive multimedia applications

• Secure shell (ssh) – for securing remote login applications

• Use them – don’t try to invent your own!

12

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2018

Using TLS

• IETF provides guidelines for how best to use TLS:  
https://tools.ietf.org/html/rfc7525
• Read this if you use TLS in your application – and check for updates first

• IETF “Using TLS in Applications” working group  
https://datatracker.ietf.org/wg/uta/charter/

• State-of-the-art in TLS implementations is in flux
• OpenSSL is popular, but poor quality

• Alternatives in rapid development – not clear which is the best long term option

• For macOS or Windows, use the system libraries

13

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2018

Key Escrow

• Effective security is difficult – failures tend to
be due to bad implementations or protocols,
not weak crypto

• So-called exceptional access or key escrow
systems will be discovered, and exploited,
by malicious actors – we do not have the
expertise to secure such systems

• Design to limit access to keying material

Keys Under Doormats:

mandating insecurity by requiring government access to all

data and communications

Harold Abelson, Ross Anderson, Steven M. Bellovin, Josh Benaloh, Matthew Blaze,

Whitfield Di�e, John Gilmore, Matthew Green, Peter G. Neumann, Susan Landau,

Ronald L. Rivest, Je↵rey I. Schiller, Bruce Schneier, Michael Specter, Daniel J. Weitzner

Abstract

Twenty years ago, law enforcement organizations lobbied to require data and

communication services to engineer their products to guarantee law enforcement

access to all data. After lengthy debate and vigorous predictions of enforcement

channels “going dark,” these attempts to regulate the emerging Internet were aban-

doned. In the intervening years, innovation on the Internet flourished, and law

enforcement agencies found new and more e↵ective means of accessing vastly larger

quantities of data. Today we are again hearing calls for regulation to mandate the

provision of exceptional access mechanisms. In this report, a group of computer

scientists and security experts, many of whom participated in a 1997 study of these

same topics, has convened to explore the likely e↵ects of imposing extraordinary

access mandates.

We have found that the damage that could be caused by law enforcement excep-

tional access requirements would be even greater today than it would have been 20

years ago. In the wake of the growing economic and social cost of the fundamental

insecurity of today’s Internet environment, any proposals that alter the security dy-

namics online should be approached with caution. Exceptional access would force

Internet system developers to reverse “forward secrecy” design practices that seek to

minimize the impact on user privacy when systems are breached. The complexity of

today’s Internet environment, with millions of apps and globally connected services,

means that new law enforcement requirements are likely to introduce unanticipated,

hard to detect security flaws. Beyond these and other technical vulnerabilities, the

prospect of globally deployed exceptional access systems raises di�cult problems

about how such an environment would be governed and how to ensure that such

systems would respect human rights and the rule of law.

14

H. Abelson, et al., “Keys under doormats: Mandating insecurity by requiring government access to all data and communications”, MIT Computer
Science and Artificial Intelligence Lab, technical report MIT-CSAIL-TR-2015-026, July 2015. http://dspace.mit.edu/handle/1721.1/97690

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2018

Summary

• Pervasive monitoring

• Confidentiality, authentication, and crypto

• Secure transport protocols

• Key escrow

15

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Writing Secure Networked Applications

16

Colin Perkins | https://csperkins.org/ | Copyright © 2018

Developing secure network applications

• The robustness principle

• Validating input data

• Writing secure code:
• Example: classic buffer overflow attack

• Arbitrary code execution

• Discussion

17

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2018

The Robustness Principle (Postel’s Law)

18

At every layer of the protocols, there is a general rule whose
application can lead to enormous benefits in robustness and
interoperability:

 “Be liberal in what you accept, and
 conservative in what you send"

Software should be written to deal with every conceivable
error, no matter how unlikely; sooner or later a packet will
come in with that particular combination of errors and
attributes, and unless the software is prepared, chaos can
ensue. In general, it is best to assume that the network is
filled with malevolent entities that will send in packets
designed to have the worst possible effect. This assumption
will lead to suitable protective design, although the most
serious problems in the Internet have been caused by
un-envisaged mechanisms triggered by low-probability events;
mere human malice would never have taken so devious a course! R

FC
11

22

• Balance interoperability with security – don’t be too liberal in what you accept;
a clear specification of how and when you will fail might be more appropriate

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2018

The Robustness Principle (Postel’s Law)

19

“Be liberal in what you accept, and
 conservative in what you send"

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2018

The Robustness Principle (Postel’s Law)

20

“Postel lived on a network with all his friends.
We live on a network with all our enemies.

Postel was wrong for todays internet.”
— Poul-Henning Kamp

See also: https://datatracker.ietf.org/doc/draft-thomson-postel-was-wrong/

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2018

Validating Input Data

http://xkcd.com/327/

21

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2018

Validating Input Data

• Networked applications fundamentally dealing with data supplied by
un-trusted third parties
• Data read from the network may not conform to the protocol specification

• Due to ignorance and/or bugs

• Due to malice, and a desire to disrupt services

• Must carefully validate all data before use

22

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2018

Writing Secure Code

• The network is hostile: any networked application is security critical
• Must carefully specify behaviour with both correct and incorrect inputs

• Must carefully validate inputs and handle errors

• Must take additional care if using type- and memory-unsafe languages, such
as C and C++, since these have additional failure modes

23

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2018

Example: Classic Buffer Overflow Attack

• Memory-safe programming languages check array bounds
• Fail cleanly with exception on out-of-bound access

• Behaviour is clearly defined at all times

• Unsafe languages, such as C and C++, don’t check
• Responsibility of the programmer to ensure bounds are not violated

• Easy to get wrong – typically results in a “core dump” – or undefined
behaviour

• What actually happens here?

24

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2018

Function Calls and the Stack

// overflow.c
#include <string.h>
#include <stdio.h>

static void
foo(char *src)
{
 char dst[12];

 strcpy(dst, src);
}

int
main(int argc, char *argv[])
{
 char hello[] = "Hello, world\n";

 foo(argv[1]);
 printf("%s", hello);
 return 0;
}

What happens when argv[1]
is longer than 12 bytes?

25

$ gcc overflow.c -o overflow
$./overflow 123456789012
Hello, world
$./overflow 1234567890123
Abort trap (core dumped)
$

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2018

Function Calls and the Stack

// overflow.c
#include <string.h>
#include <stdio.h>

static void
foo(char *src)
{
 char dst[12];

 strcpy(dst, src);
}

int
main(int argc, char *argv[])
{
 char hello[] = "Hello, world\n";

 foo(argv[1]);
 printf("%s", hello);
 return 0;
}

26

Parameters

Local variables
for foo(...)

...unused...

0xbfe710fc

0xbfe71108

0xbfe71110

char dst[12]

char *src

Return Address

Local variables
for main(...)

Example of call stack within the
call to the function foo()

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2018

Function Calls and the Stack

• The strcpy() call doesn’t check array
bounds

• Overwrites the function return address
on stack, along with the following
memory locations

• If malicious, we can write executable
code into this space, set return address
to jump into our code…

Parameters

Local variables
for foo(...)

...unused...

0xbfe710fc

0xbfe71108

0xbfe71110

char dst[12]

char *src

Example of call stack within the
call to the function foo() 27

Return Address

Local variables
for main(...)

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2018

Arbitrary Code Execution

• Buffer overflows in network code are one of the main sources of
security problems
• If you write network code in C/C++, be very careful to check array bounds

• If your code can be crashed by received network traffic, it probably has an
exploitable buffer overflow

• http://insecure.org/stf/smashstack.html

28

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2018

Discussion

• Many networked applications written in memory- or type-unsafe
languages
• Many good historical reasons for this, and clearly will take time to replace old

deployments with safe alternatives

• Is it justifiable to write new networked code in this way, now that there are
safe alternatives?
• Java, C#, Swift, Rust, …

• As engineers, we have a duty to use best practices – could you defend your
implementation choices?

29

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

