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Lecture Outline

• TCP and the Berkeley Sockets API 

• Congestion control principles 

• Congestion control in the Internet 
• TCP congestion control 

• Alternative approaches
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The Berkeley Sockets API

• Widely used low-level C networking API 

• First introduced in 4.3BSD Unix 
• Now available on most platforms: Linux, MacOS X, Windows, FreeBSD, 

Solaris, etc. 

• Largely compatible cross-platform 

• Recommended reading: 
• Stevens, Fenner, and Rudoff, “Unix Network Programming  

volume 1: The Sockets Networking API”, 3rd Edition,  
Addison-Wesley, 2003.
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Concepts

Network

Socket

Application
• Sockets provide a standard interface between 

network and application 

• Two types of socket: 
• Stream – provides a virtual circuit service 

• Datagram – delivers individual packets 

• Independent of network type: 
• Commonly used with Internet Protocol sockets, so 

stream sockets map onto TCP/IP connections and 
datagram sockets onto UDP/IP, but not specific to 
the Internet protocols
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TCP Sockets
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bind(fd, ..., ...)

Network

Client

int fd = socket(...)

Server

listen(fd, ...)

connfd = accept(fd, ...)

recv(connfd, buffer, buflen, flags)

send(connfd, data, datalen, flags)

close(connfd)

connect(fd, ..., ...)

send(fd, data, datalen, flags)

recv(fd, buffer, buflen, flags)

close(fd)

int fd = socket(...)

Socket

fd

Socket

fd connfd

?
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What services do TCP sockets provide?

• TCP provides five key features: 
• Service differentiation 

• Connection-oriented 

• Point-to-point 

• Reliable, in-order, delivery of a byte stream 

• Congestion control 

• These are provided by the operating system, via the sockets API
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Client-server or peer-to-peer?

• Sockets initially unbound, and can either accept or make a 
connection 

• Most commonly used in a client-server fashion: 
• One host makes the socket listen() for, and accept(), connections on a 

well-known port, making it into a server 
• The port is a 16-bit number used to distinguish servers 

• E.g. web server listens on port 80, email server on port 25 

• The other host makes the socket connect() to that port on the server 

• Once connection is established, either side can send() data into the 
connection, where it becomes available for the other side to recv() 

• Simultaneous connections are possible, using TCP in a peer-to-
peer manner
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Role of the TCP Port Number

• Servers must listen on a known 
port; IANA maintains a registry 

• Distinction between system and 
user ports ill-advised – security 
problems resulted 

• Insufficient port space available 
(>75% of ports are registered) 

• TCP clients traditionally connect 
from a randomly chosen port in 
the ephemeral range 

• The port must be chosen randomly, to 
prevent spoofing attacks 

• Many systems use the entire port range 
for source ports, to increase the amount 
of randomness available
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Port Range Name Intended use

0 1023 Well-known (system) ports Trusted operating system services

1024 49151 Registered (user) ports User applications and services

49152 65535 Dynamic (ephemeral) ports Private use, peer-to-peer applications, 
source ports for TCP client connections

RFC 6335

http://www.iana.org/assignments/port-numbers
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TCP Connection Setup

• Connections use 3-way handshake 
• The SYN and ACK flags in the TCP header signal 

connection progress 

• Initial packet has SYN bit set, includes randomly 
chosen initial sequence number 

• Reply also has SYN bit set and randomly chosen 
sequence number, acknowledges initial packet 

• Handshake completed by acknowledgement of 
second packet 

• Happens during the connect()/accept() calls 

• Combination ensures robustness 
• Randomly chosen initial sequence numbers give 

robustness to delayed packets or restarted hosts 

• Acknowledgements ensure reliability
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Similar handshake ends connection, 
with FIN bits signalling the teardown
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Reading and Writing Data on a TCP Connection

• Call send() to transmit data 
• Will block until the data can be written, 

and returns actual amount of data sent 
• Might not be able to send all the data, if 

the connection is congested 

• Returns -1 if error occurs, sets errno

• Call recv() to read up to BUFLEN 
bytes of data from a connection 
• Will block until some data is available 

or the connection is closed 

• Returns the number of bytes read from 
the socket; 0 if the sender closed the 
connection; or -1 and sets errno if an 
error occurred  

• Received data is not null terminated –
potential security risk
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#define BUFLEN 1500
...
ssize_t i;
ssize_t rcount;
char    buf[BUFLEN];
...
rcount = recv(fd, buf, BUFLEN, 0);
if (rcount == -1) {
    // Error has occurred
    ...
}
...
for (i = 0; i < rcount; i++) {
    printf(“%c”, buf[i]);
}

char data[] = “Hello, world!”;
int  datalen = strlen(data);
...
int sent = send(fd, data, datalen, 0);
if (sent == -1) {
    // Error has occurred
    ...
} else if (sent < datalen) {
    // Couldn’t send it all, retry unsent
    ...
}
...
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Reading and Writing Data on a TCP Connection

• The send() call enqueues data for transmission 

• This data is split into segments, each segment is 
placed in a TCP packet, that packet is sent when 
allowed by the congestion control algorithm  
• Segments have sequence numbers → acknowledged 

by the receiver 

• If the data in a send() call  is too large to fit into 
one segment, the TCP implementation will split it 
into several segments; similarly, several send() 
requests might be aggregated into a single TCP 
segment 
• Both are done transparently by the TCP implementation 

and are invisible to the application 

• Implication: the data returned by recv() doesn’t 
necessarily correspond to a single send() call
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Application Level Framing
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HTTP/1.1 200 OK
Date: Mon, 19 Jan 2009 22:25:40 GMT
Server: Apache/2.0.46 (Scientific Linux)
Last-Modified: Mon, 17 Nov 2003 08:06:50 GMT
ETag: "57c0cd-e3e-17901a80"
Accept-Ranges: bytes
Content-Length: 3646
Connection: close
Content-Type: text/html; charset=UTF-8

<HTML>
<HEAD>
<TITLE>Computing Science, University of Glasgow </TITLE>
...
</BODY>
</HTML>

The recv() call can return data in unpredictably sized chunks – applications must 
be written to cope with this

Example: HTTP/1.1 response 

Ideally all headers received in 
one recv() call, then parsed 
to extract the Content-Length, 
then read entire body 

TCP might split the response 
arbitrarily – parsing becomes 
more complex
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TCP Reliability

• TCP connections are reliable 
• Each TCP packet has a sequence number and an 

acknowledgement number 
• Sequence number counts how many bytes are sent 

(this example is unrealistic, since it shows one byte 
being sent per packet) 

• Acknowledgement number specifies the next byte 
expected to be received 
• Cumulative positive acknowledgement 

• Only acknowledge contiguous data packets (sliding 
window protocol, so several data packets in flight) 

• If a packet is lost, receipt of subsequent packets will 
trigger duplicate acknowledgements 

• TCP layer retransmits lost packets – this is invisible 
to the application
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TCP Reliability: How is Loss Detected

• Triple duplicate ACK → some packets lost, 
but later packets arriving 
• Triple duplicate = Four identical ACKs in a row 

• Timeout → send data but acknowledgements 
stop returning 
• Either the receiver or the network path has failed
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TCP Reliability and Packet Reordering

• Packet delay leading to reordering will also 
cause duplicate ACKs to be received 

• Gives appearance of loss, when the data 
was merely delayed 

• TCP uses triple duplicate ACK as indication 
of packet loss to prevent reordered packets 
causing retransmissions 
• Assumption: packets will only be delayed a little; 

if delayed enough that a triple duplicate ACK is 
generated, TCP will treat the packet as lost and 
send a retransmission
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Head of Line Blocking in TCP

• Data delivered in order, even after loss occurs 
• TCP will retransmit the missing data, transparently to the application  

• A recv() for missing data will block until it arrives; TCP always delivers 
data in an in-order contiguous sequence
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Sender Receiver
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recv() ! 1500 bytes
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A Complete TCP Connection
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Sender Receiver

seq = 0, ack = 1
seq = 1500
seq = 3000
seq = 4500
seq = 6000

seq = 7500

ack = 1500
ack = 3000

ack = 4500

ack = 4500

ack = 4500
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recv() ! 1500 bytes
recv() ! 1500 bytes
recv() ! 1500 bytes

recv() ! 6000 bytes

recv() blocks

x

ack = 4500

ack = 10500
seq = 4500

seq = 10500, FIN

seq = 0, SYN SYN

ack = 1, seq = 0, SYN
SYN+ACK

FIN

FIN+ACKseq = 10500, ack = 10501
ack = 10501, FIN

Initial 3-way 
handshake

Sending data

Closing 3-way 
handshake

ACK

ACK
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What is Congestion Control?

• Adapting speed of transmission to match available end-to-end 
network capacity 

• Preventing congestion collapse of a network
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Network or Transport Layer?

• Can implement congestion control at either the network or the 
transport layer 
• Network layer – safe, ensures all transport protocols are congestion 

controlled, requires all applications to use the same congestion control 
scheme 

• Transport layer – flexible, transports protocols can optimise congestion 
control for applications, but a misbehaving transport can congest the network
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Congestion Control Principles

• Two key principles, first stated 
by Van Jacobson in 1988:  
• Conservation of packets 

• Additive increase and multiplicative 
decrease of the sending rate 

• Together, ensure stability of the 
network 

• Congestion control standards in 
IETF maintained by Sally Floyd 
for many years 
• High-speed TCP extensions, Quick 

start, SACK, ECN, etc.
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Congestion Avoidance and Control 

Van Jacobson * 

University of California 
Lawrence Berkeley Laboratory 

Berkeley, CA 94720 
van@helios.ee.lbl.gov 

In October of ‘86, the Internet had the first of what 
became a series of ‘congestion collapses’. During this 
period, the data throughput from LBL to UC Berke- 
ley (sites separated by 400 yards and three IMP hops) 
dropped from 32 Kbps to 40 bps. Mike Karels’ and I 
were fascinated by this sudden factor-of-thousand drop 
in bandwidth and embarked on an investigation of why 
things had gotten so bad. We wondered, in particular, 
if the 4.3BSD (Berkeley UNIX) TCP was mis-behaving or 
if it could be tuned to work better under abysmal net- 
work conditions. The answer to both of these questions 
was “yes”. 

Since that time, we have put seven new algorithms 
into the 4BSD TCP: 

(27 
(ii) 

(iii) 

(iv) 

(v) 

(vi) 
(vii) 

round-trip-time variance estimation 

exponential retransmit timer backoff 

slow-start 

more aggressive receiver ack policy 

dynamic window sizing on congestion 

Kam’s clamped retransmit backoff 

fast retransmit 

Our measurements and the reports of beta testers sug- 
gest that the final product is fairly good at dealing with 
congested conditions on the Internet. 

l This work was supported in part by the U.S. Department of En- 
ergy under Contract Number DE-AC03-76SF00098. 

* The algorithms and ideas described in this paper were developed 
in collaboration with Mike Karels of the UC Berkeley Computer Sys- 
tem Research Group. The reader should assume that anything clever 
is due to Mike. Opinions and mistakes are the property of the author. 

Permission to copy without fee all or part of this material is granted provided 
that the copies are not made or distributed for direct commercial advantage. 
the ACM copyright notice and the title of the publication and its date appear. 
and notice IS given that copying is by permission of the Association for 
Computing Machinery. To copy othenvise or to republish. requires a fee and/ 
or specific permission. 

1988 ACM O-8979 I-279-9/88/008/03 14 

This paper is a brief description of (i) - (v) and the ra- 
tionale behind them. (vi) is an algorithm recently devel- 
oped by Phil Kam of Bell Communications Research, 
described in [KP87]. (vii) is described in a soon-to-be- 
published RFC. 

Algorithms (9 - (v) spring from one observation: 
The flow on a TCP connection (or IS0 TP-4 or Xerox NS 
SPP connection) should obey a ‘conservation of pack- 
ets’ principle. And, if this principle were obeyed, con- 
gestion collapse would become the exception rather 
than the rule. Thus congestion control involves finding 
places that violate conservation and fixing them. 

By ‘conservation of packets’ I mean that for a con- 
nection ‘in equilibrium’, i.e., running stably with a full 
window of data in transit, the packet flow is what a 
physicist would call ‘conservative’: A new packet isn’t 
put into the network until an old packet leaves. The 
physics of flow predicts that systems with this property 
should be robust in the face of congestion. Observation 
of the Internet suggests that it was not particularly ro- 
bust. Why the discrepancy? 
There are only three ways for packet conservation to 
fail: 

1. 

2. 

3. 

The connection doesn’t get to equilibrium, or 

A sender injects a new packet before an old packet 
has exited, or 

The equilibrium can’t be reached because of re- 
source limits along the path. 

In the following sections, we treat each of these in turn. 

1 Getting to Equilibrium: Slow-start 

Failure (1) has to be from a connection that is either 
starting or restarting after a packet loss. Another way 
to look at the conservation property is to say that the 
sender uses acks as a ‘clock’ to strobe new packets into 
the network. Since the receiver can generate acks no 
faster than data packets can get through the network, 
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V. Jacobson, “Congestion avoidance and control”, Proceedings of 
the SIGCOMM Conference, Stanford, CA, USA, August 1988. ACM. 
http://dx.doi.org/10.1145/52324.52356
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Conservation of Packets

• The network has a certain capacity 
• The bandwidth x delay product of the path 

• When in equilibrium at that capacity, send one packet for each 
acknowledgement received 
• Total number of packets in transit is constant 

• “ACK clocking” – each acknowledgement “clocks out” the next packet 

• Automatically reduces sending rate as network gets congested and delivers 
packets more slowly
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AIMD Algorithms

• Adjust sending rate according to an additive increase/multiplicative 
decrease algorithm 
• Start slowly, increase gradually to find equilibrium 

• Add a small amount to the sending speed each time interval without loss 

• For a window-based algorithm wi = wi-1 + α each RTT, where α = 1 typically 

• Respond to congestion rapidly 
• Multiply sending window by some factor β < 1 each interval loss seen 

• For a window-based algorithm wi = wi-1 × β each RTT, where β = 1/2 typically 

• Faster reduction than increase → stability
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Congestion in the Internet

• Network layer signals that congestion is occurring to the transport 

• Two ways this is done: 
• Packet arrives at router, but queue for outgoing link is full → router discards 

the packet (this is the common case) 

• Packet arrives at router, queue for outgoing link is getting close to full, and 
transport has signalled that it understands ECN → router sets ECN-CE bit  
in the packet header 

• Transport protocol (e.g., TCP) detects congestion signal and reacts 
• Receiver detects packet loss due to gap in sequence number space; or the 

receiver notices the ECN-CE mark in the packet header 

• When no congestion signal → gradual additive increase in the sending rate 

• When congestion signal received → multiplicative decrease in sending rate 

• AIMD algorithm, following Jacobson’s principles
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TCP Congestion Control

• TCP uses a window-based congestion control algorithm 
• Maintains a sliding window onto the available data that determines how 

much can be sent according to the AIMD algorithm 

• Plus slow start and congestion avoidance 

• Gives approximately equal share of the bandwidth to each flow sharing a link 

• The following slides give an outline of TCP Reno congestion control 
• The state of the art in TCP as of ~1990 

• See RFC 7414 (https://tools.ietf.org/html/rfc7414) for a roadmap of current 
TCP specifications (57 pages, referencing ~150 other documents) 

• “The world’s most baroque sliding-window protocol” – Lloyd Wood
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Sliding Window Protocol: Stop and Wait

• Consider a simple stop-and-wait protocol 
• Transmit a packet of data, and then wait for 

acknowledgement from receiver 

• When acknowledgement received, send next 
packet 

• If no acknowledgement after some time out, 
retransmit packet 

• Limits sender to one frame outstanding 
→ poor performance

Sender

Tim
e

Receiver

Tim
e

x

Transmit packet 1

Transmit packet 2

Time-out 
Retransmit packet 2

Transmit packet 3

Transmit packet 4

Acknowledge 1

Acknowledge 2

Acknowledge 3
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Sliding Window Protocol: Link Utilisation

• Why does stop-and wait perform poorly? 

• It takes time, ts, to send a packet 
• ts = (packet size) / (link bandwidth) 

• Acknowledgement returns tRTT seconds later 

• Link utilisation, U = ts / tRTT 
• The fraction of the time the link is in use sending 

packets – ideally, we want U ≈ 1.0 

• Assume a gigabit link sending a 1500 byte packet 
from Glasgow to London: 
• ts = 1500×8 bits / 109 bits per second = 0.000012s 

• tRTT ≈ 0.010 seconds 

• U ≈ 0.0012  

• i.e., the link is in use 0.12% of the time 

• Sliding window protocols improve on stop-
and-wait by sending more than one packet 
before stopping for acknowledgement
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Tim
e

tstRTT
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Sliding Window Protocol
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Improve link utilisation by allowing 
several frames to be outstanding
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Sliding Window Protocol

Sender

Tim
e

Receiver

Tim
e

654321

Improve link utilisation by allowing 
several frames to be outstanding

Acknowledgement received 
window slides along one 
packet

Problem: how to size the window?  
Should be bandwidth x delay of the path, but neither 
are known to the sender
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TCP Congestion Control

• A sliding window protocol for TCP: 
• How to choose initial window? 

• How to find the link capacity? 
• Slow start to estimate the bottleneck link capacity 

• Congestion avoidance to probe for changes in capacity
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• How to choose initial window size, Winit? 
• No information → need to measure path capacity 

• Start with a small window, increase until congestion 
• Winit of one packet per round-trip time is the only safe option, equivalent to stop-and-wait 

protocol, but is usually overly pessimistic 

• Traditionally, TCP used a slightly larger initial window: [RFC 3390]  
Winit = min(4 × MSS, max(2 × MSS, 4380 bytes)) packets per RTT 
• e.g., Ethernet with MTU = 1500 bytes, TCP/IP headers = 40 bytes gives  

Winit = min(4 × 1460, max(2 × 1460, 4380)) = 4380 bytes (~3 packets) 

• Modern TCP uses an initial window of 10 packets per RTT [RFC 6928] 
• Experimental, but data from Google shows network  

capacity has increased enough so this is likely safe

Choosing the Initial Window

MSS = Maximum Segment Size 
(MTU minus TCP/IP header size)
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ABSTRACT

TCP flows start with an initial congestion window of at most
four segments or approximately 4KB of data. Because most
Web transactions are short-lived, the initial congestion win-
dow is a critical TCP parameter in determining how quickly
flows can finish. While the global network access speeds
increased dramatically on average in the past decade, the
standard value of TCP’s initial congestion window has re-
mained unchanged.

In this paper, we propose to increase TCP’s initial conges-
tion window to at least ten segments (about 15KB). Through
large-scale Internet experiments, we quantify the latency
benefits and costs of using a larger window, as functions
of network bandwidth, round-trip time (RTT), bandwidth-
delay product (BDP), and nature of applications. We show
that the average latency of HTTP responses improved by
approximately 10% with the largest benefits being demon-
strated in high RTT and BDP networks. The latency of low
bandwidth networks also improved by a significant amount
in our experiments. The average retransmission rate in-
creased by a modest 0.5%, with most of the increase com-
ing from applications that effectively circumvent TCP’s slow
start algorithm by using multiple concurrent connections.
Based on the results from our experiments, we believe the
initial congestion window should be at least ten segments
and the same be investigated for standardization by the
IETF.

Categories and Subject Descriptors

C.2.2 [Computer Communication Networks]: Network
Protocols—TCP, HTTP ; C.2.6 [Computer Communica-
tion Networks]: Internetworking—Standards; C.4 [Perfor-
mance of Systems]: Measurement techniques, Performance
attributes

General Terms

Measurement, Experimentation, Performance

Keywords

TCP, Congestion Control, Web Latency, Internet Measure-
ments

1. INTRODUCTION ANDMOTIVATION
We propose to increase TCP’s initial congestion window

to reduce Web latency during the slow start phase of a con-
nection. TCP uses the slow start algorithm early in the

connection lifetime to grow the amount of data that may be
outstanding at a given time. Slow start increases the conges-
tion window by the number of data segments acknowledged
for each received acknowledgment. Thus the congestion win-
dow grows exponentially and increases in size until packet
loss occurs, typically because of router buffer overflow, at
which point the maximum capacity of the connection has
been probed and the connection exits slow start to enter
the congestion avoidance phase. The initial congestion win-
dow is at most four segments, but more typically is three
segments (approximately 4KB) [5] for standard Ethernet
MTUs. The majority of connections on the Web are short-
lived and finish before exiting the slow start phase, making
TCP’s initial congestion window (init cwnd) a crucial pa-
rameter in determining flow completion time. Our premise
is that the initial congestion window should be increased to
speed up short Web transactions while maintaining robust-
ness.

While the global adoption of broadband is growing, TCP’s
init cwnd has remained unchanged since 2002. As per a
2009 study [4], the average connection bandwidth globally
is 1.7Mbps with more than 50% of clients having bandwidth
above 2Mbps, while the usage of narrowband (<256Kbps)
has shrunk to about 5% of clients. At the same time, appli-
cations devised their own mechanisms for faster download of
Web pages. Popular Web browsers, including IE8 [2], Fire-
fox 3 and Google’s Chrome, open up to six TCP connections
per domain, partly to increase parallelism and avoid head-of-
line blocking of independent HTTP requests/responses, but
mostly to boost start-up performance when downloading a
Web page.

In light of these trends, allowing TCP to start with a
higher init cwnd offers the following advantages:

(1) Reduce latency. Latency of a transfer completing in
slow start without losses [8], is:

⌈logγ(
S(γ − 1)
init cwnd

+ 1)⌉ ∗ RTT +
S
C

(1)

where S is transfer size, C is bottleneck link-rate, γ is 1.5
or 2 depending on whether acknowledgments are delayed
or not, and S/init cwnd ≥ 1. As link speeds scale up,
TCP’s latency is dominated by the number of round-trip
times (RTT) in the slow start phase. Increasing init cwnd
enables transfers to finish in fewer RTTs.

(2) Keep up with growth in Web page sizes. The Inter-
net average Web page size is 384KB [14] including HTTP
headers and compressed resources. An average sized page
requires multiple RTTs to download when using a single
TCP connection with a small init cwnd. To improve page
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Finding the Link Capacity

• The initial window allows you to send 

• How to choose the right window size to match the link capacity? 
Two issues: 
• How to find the correct window for the path when a new connection starts – 

slow start 

• How to adapt to changes in the available capacity once a connection is 
running – congestion avoidance

36
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Slow Start

• Initial window, Winit = 1 packet per RTT 
• Or similar… a “slow start” to the connection 

• Need to rapidly increase to the correct value for the network 
• Each acknowledgement for new data increases the window by 1 packet per 

RTT 

• On packet loss, immediately stop increasing window
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Slow Start

Sender Receiver • Two packets for each acknowledgement 

• The window doubles on every round trip 
time – until loss occurs 

• Rapidly finds the correct window size for 
the path
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Congestion Avoidance

• Congestion avoidance mode used to probe for changes in network 
capacity 
• E.g., is sharing a connection with other traffic, and that traffic stops, meaning 

the available capacity increases 

• Window increased by 1 packet per RTT 
• Slow, additive increase in window: wi = wi-1 + 1 

• Until congestion is observed → respond to loss 
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Detecting Congestion

• TCP uses cumulative positive ACKs → two ways to detect 
congestion 
• Triple duplicate ACK → packet lost due to congestion 

• ACKs stop arriving → no data reaching receiver; link has failed completely 
somewhere 
• How long to wait before assuming ACKs have stopped? 

• Trto = max(1 second, average RTT + (4 x RTT variance)) 
• Statistical theory: 99.99% of data lies with 4σ of the mean, assuming normal distribution  

(where variance of the distribution = σ2)

40

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/


Colin Perkins | https://csperkins.org/ | Copyright © 2018

Responding to Congestion

• If loss detected by triple-duplicate ACK: 
• Transient congestion, but data still being received 

• Multiplicative decrease in window: wi = wi-1 × 0.5 

• Rapid reduction in sending speed allows congestion to clear quickly, avoids 
congestion collapse

41

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/


Colin Perkins | https://csperkins.org/ | Copyright © 2018

Responding to Congestion

• If loss detected by time-out: 
• No packets received for a long period of time – likely a significant problem 

with network (e.g., link failed) 

• Return to initial sending window, and probe for the new capacity using slow 
start 

• Assume the route has changed, and you know nothing about the new path
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Congestion Window Evolution 

43

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

C
on

ge
st

io
n 

W
in

do
w

 (s
eg

m
en

ts
)

Time (RTT)

Slow start Congestion avoidance

Typical evolution of TCP window, assuming Winit = 1

Converge on 
fair share of the 
path capacity

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

0

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/


Colin Perkins | https://csperkins.org/ | Copyright © 2018

Congestion Window Evolution, Buffering, and Throughput
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CHAPTER 2. A SINGLE TCP FLOW THROUGH A ROUTER 10
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Figure 2.2: A single TCP flow through a single router with buffers equal to the
delay-bandwidth product (142 packets).

Source: G. Appenzeller, “Sizing Router Buffers”, PhD thesis, Stanford University, March 2005. 
http://tiny-tera.stanford.edu/~nickm/papers/guido-thesis.pdf (Figures 2.1 and 2.2)

CHAPTER 2. A SINGLE TCP FLOW THROUGH A ROUTER 8

Figure 2.1: Topology for a Single TCP Flow

W The TCP Window Size of the sender

TP The propagation delay from sender to receiver

RTT The Round-Trip-Time as measured by the sender

C The capacity of the bottleneck link

C ′ The capacity of the access link

R The sending rate of the sender

U The link utilization measured on the link

Q The length of the buffer queue

B The buffer size, Q ≤ B

The TCP sending rate is controlled by the congestion window W (for a brief

summary of how TCP’s congestion control algorithm works see Appendix A.1).

For this experiment, we assume that there is no congestion on the reverse path

and that the capacity of the access link is higher than the capacity of the bottleneck

link C ′ > C. We also assume that the window size and the sending rate of the TCP

flow are not limited.

For simplicity, we will express data (Q, B, W ) in packets and rates (U , R) in

packets per second. This is a simplification as TCP effectively counts bytes and

packets might have different lengths. Buffers of real routers may be organized as

packets or smaller units (see Section 6.2), however, in practice, a flow sending at the

maximum rate will behave close to this simplified model as it will primarily generate

packets of the MTU size.

The RTT that a flow experiences is the two-way propagation delay, plus the

queueing delay TQ from the router queue:

buffer size = bandwidth × delay 

• Bottleneck queue never empty 
• Bottleneck link never becomes 

idle → sending rate varies, but 
receiver sees continuous flow
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Performance and Limitations of TCP

• TCP congestion control highly effective at keeping bottleneck link 
fully utilised 
• Provided sufficient buffering in the network: buffer size = bandwidth × delay 

• Packets queued in buffer → delay 

• TCP trades some extra delay to ensure high throughput 

• Unless ECN used, TCP assumes loss is due to congestion 
• Too much traffic queued at an intermediate link → some packets dropped 

• This is not always true: 
• Wireless networks 

• High-speed long-distance optical networks 

• Much research into improved versions of TCP for wireless links

45

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/


Colin Perkins | https://csperkins.org/ | Copyright © 2018

Summary

• Congestion control principles 
• Conservation of packets 

• Additive increase, multiplicative decrease (AIMD) 

• TCP congestion control 
• Slow start 

• Congestion avoidance 

• AIMD
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