
Colin Perkins | https://csperkins.org/ | Copyright © 2018 | This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-nd/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Bridging

Networked Systems (H)
Lecture 3

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2018

Lecture Outline

• Link-layer topology evolution
• Hubs

• Bridges

• Basic bridge operation

• Loops in bridged networks

• Spanning tree protocol

2

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2018

Bridging

• Link-layer topology evolution:
• Media access control assumes a single link – on

wired networks, a single cable

• Vulnerable to cable damage

• A hub is a cable in a box – no intelligence

• Damage to vulnerable cables disconnects only a
single host, rather than partitioning the network

• A bridge is an intelligent device

• Understands the media access control protocol
– joins multiple links together

Single cable

Hub
(cable in a box)

3

Bridged network

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2018

Extending Link-layer Networks: Hubs

• A hub is a physical layer interconnection of links
• Equivalent to running a longer cable

• Doesn’t improve scalability of the network – but can make physical interconnection of
cables/devices easier

4

Data Link

Network

Transport

Session

Presentation

Application

Data Link

Network

Transport

Session

Presentation

Application

Physical Physical

End System End SystemHub

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2018

Extending Link-layer Networks: Bridging

• A bridge is a data link layer device to interconnect physical networks
• An intelligent device: understands and processes data link layer frames, identifies location of

hosts, forwards only those frames of interest

• Automatic – needs zero configuration

• Example: “Ethernet switch”

5

Data Link

Network

Transport

Session

Presentation

Application

Data Link

Network

Transport

Session

Presentation

Application

Data Link Data Link

Physical Physical

End System End SystemHub

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2018

Basic Bridge Operation

• Learn addresses on each link
• Observe source addresses of packets

• Soft state time-out allows for graceful response to
failure and node mobility

• Forward traffic as appropriate
• Unicast traffic based on host locations (hash from

address to destination link, flooding packets to
unknown hosts)

• Multicast based on group membership

• Broadcast traffic

6

A B

C

D

E

2

1

1,1 1,2

1,3

1,4 2,1

2,2

2,3

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2018

Basic Bridge Operation

• State of network on initialisation:
• Neither bridge knows location of any hosts

Link Host
1,1
1,2
1,3
1,4

Link Host
2,1
2,2
2,3

7

Bridge 1 state Bridge 2 state A B

C

D

E

2

1

1,1 1,2

1,3

1,4 2,1

2,2

2,3

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2018

Basic Bridge Operation

• Host A sends packet destined for host B:
• Received at bridge 1, which records location of host A

• Location of host B unknown, so bridge 1 floods packet to all outgoing links

• Also received at bridge 2, which doesn’t know location of host B, so floods the packet to all
outgoing links; records location of host A

Link Host
1,1 A
1,2
1,3
1,4

Link Host
2,1
2,2
2,3 A

8

Bridge 1 state Bridge 2 state A B

C

D

E

2

1

1,1 1,2

1,3

1,4 2,1

2,2

2,3

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2018

Basic Bridge Operation

• Host B responds with packet destined for host A
• Received at bridge 1, which knows location of host A, and can directly forward the packet

without flooding

• Bridge 1 records location of host B

Link Host
1,1 A
1,2 B
1,3
1,4

Link Host
2,1
2,2
2,3 A

9

Bridge 1 state Bridge 2 state A B

C

D

E

2

1

1,1 1,2

1,3

1,4 2,1

2,2

2,3

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2018

Basic Bridge Operation

• Some time later, host E sends packet destined for host B
• Received at bridge 2, which doesn’t know location of B and so floods packet to all outgoing

links; records the location of host E

• Received at bridge 1, which does know how to reach host B, and directly forwards the
packet; records how to reach host E

Link Host
1,1 A
1,2 B
1,3 E
1,4

Link Host
2,1 E
2,2
2,3 A

10

Bridge 1 state Bridge 2 state A B

C

D

E

2

1

1,1 1,2

1,3

1,4 2,1

2,2

2,3

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2018

Basic Bridge Operation

• Over time, bridges learn location of every host, and can forward all packets
without flooding

Link Host
1,1 A
1,2 B
1,3 D,E
1,4 C

Link Host
2,1 E
2,2 D
2,3 A,B,C

11

Bridge 1 state Bridge 2 state A B

C

D

E

2

1

1,1 1,2

1,3

1,4 2,1

2,2

2,3

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2018

Basic Bridge Operation

• Learning protocol – finds all hosts without needing any
configuration

• Flooding ensures connectivity is maintained, even when protocol
has no knowledge – performance is never worse than a hub, even
when flooding

• Use of soft state and timeouts ensures knowledge of failed or
disconnected devices disappears

• Poor scalability – every bridge knows about every host

12

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2018

Loops in Bridged Networks

13

A

2

1

3

B

C

D
E

F

G
H Host A sends packet to host X, that does

not exist
• Received at bridge 1, which doesn’t

know location of X, so floods packet
to all outgoing links

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2018

Loops in Bridged Networks

14

A

2

1

3

B

C

D
E

F

G
H Host A sends packet to host X, that does

not exist
• Received at bridge 1, which doesn’t

know location of X, so floods packet
to all outgoing links

• Received at bridges 2 and 3, which
also don’t know location of X, and
so flood packet to all outgoing links

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2018

Loops in Bridged Networks

15

A

2

1

3

B

C

D
E

F

G
H Host A sends packet to host X, that does

not exist
• Received at bridge 1, which doesn’t

know location of X, so floods packet
to all outgoing links

• Received at bridges 2 and 3, which
also don’t know location of X, and
so flood packet to all outgoing links

• Packets cross in transit between
bridges 2 and 3 – causing a loop
unless countermeasures are taken

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2018

Loops in Bridged Networks

• Solution: build a spanning tree over the network, forward packets
along this tree

• Model network as an undirected graph, G

• A spanning tree over that graph is a tree comprising all the vertices and
some of the edges of G

• Edges are removed to eliminate loops, leaving minimal set of edges that
still connect all vertices

16

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2018

Spanning Tree Algorithm

• Distributed algorithm to build spanning  
tree developed by Radia Perlman
• Each bridge has a globally unique address

• Bridge with numerically lowest address is the root bridge

• Each bridge periodically informs it’s neighbours what it thinks is address of the root
bridge – potentially making them update what they think it the root address

• Determine root port (port with shortest path to root bridge) of each bridge,
except the root bridge

• For each LAN, select designated bridge for the LAN (this is the bridge with
the shortest path to the root bridge; tie-break based on address)
• The port connecting the designated bridge to the LAN is a designated port

• Enable all root ports and all designated ports, and disable all other ports –
forward traffic using only the enabled ports

S
ou

rc
e:

 S
un

 M
ic

ro
sy

st
em

s

17

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2018

Spanning Tree Algorithm

18

A

2

1

3

B

α

D
E

F

G
H Bridge 1 is the root bridge (lowest address)

The root ports are 2/1 and 3/5

The designated bridges are:
• Bridge 1 for hosts A, B, and H and

links α and β
• Bridge 2 for hosts F and G and link γ
• Bridge 3 for hosts C, D, and E

The designated ports are:
• Bridge 1: 1/1, 1/2, 1/3, 1/4, and 1/5
• Bridge 2: 2/2, 2/3, and 2/4
• Bridge 3: 3/2, 3/3, and 3/4

Port 3/1 is neither a root or designated port
and is disabled, all others are enabled

1/1 1/2

1/3

1/41/5
2/1 2/2

2/3
2/4

3/1

3/23/3

3/4 3/5

β

γ

C

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2018

Algorhyme

“I think that I shall never see 
A graph more lovely than a tree.
A tree whose crucial property 
Is loop-free connectivity.
First the Root must be selected. 
By ID it is elected.
Least cost paths from Root are traced. 
In the tree these paths are placed.
A mesh is made by folks like me. 
Then bridges find a spanning tree.”

R. Perlman, “An algorithm for distributed computation of a spanning tree in an extended LAN”,  
Proc. ACM SIGCOMM ’85, Vancouver, BC, Canada, September 1985,  
DOI: 10.1145/319056.319004 (http://dl.acm.org/citation.cfm?id=319004)

19

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

