
Networked Systems (H) Laboratory Exercise 4:
UDP/IP Networking in C

Dr Colin Perkins
School of Computing Science

University of Glasgow
https://csperkins.org/teaching/2017-2018/networked-systems/

8 March 2018

Introduction

The user datagram protocol (UDP) provides an unreliable and connectionless datagram service to
applications. It is primarily used by local-area request-response protocols such as the DNS, or for
applications such as voice-over-IP that prefer timeliness to reliability. UDP behaviour stands in sharp
contrast to TCP, which provides a reliable, connection oriented, stream abstraction.

This exercise will explore basic UDP/IP socket programming in C. It is a formative exercise and is
not assessed. You do not need to submit your solutions.

Background: UDP Socket Programming

A UDP socket can be created using the socket() system call in the usual manner, but specifying
SOCK_DGRAM as the socket type:

int fd = socket(AF_INET, SOCK_DGRAM, 0);

Once a UDP socket has been created, it should be bound to a known port if it is expected to act as a
server that sends and receives datagrams. This is done using the bind() system call, in exactly the same
was as for a TCP socket. The arguments to bind() indicate the local address and port to which the socket
should be bound. Since UDP is connectionless, there is no need to call the listen(), accept(), or
connect() functions.

UDP datagrams can be transmitted using the sendto() function. This takes as arguments the file
descriptor representing the socket, a buffer of data to be transmitted, the length of that buffer, and the
addresses and port to which that buffer should be sent. The destination address is specified as a struct
sockaddr *, and a corresponding size. Since the destination address is specified in the sendto() call,
it’s possible to send each datagram to a different destination even though they’re all sent from the same
socket.

int fd;
char buffer[...];
int buflen = sizeof(buffer);
struct sockaddr_in addr = ...;
...
if (sendto(fd, buffer, buflen, 0, (struct sockaddr *) &addr, sizeof(addr)) < 0) {
// Error...

}

1

https://csperkins.org/teaching/2017-2018/networked-systems/


If you have a DNS name for the host you want to send to, you need to look-up the corresponding IP
address using getaddrinfo() in much the same way as you would for a TCP socket, and pass the IP
address to sendto(). If getaddrinfo() returns several IP addresses, you should probe them to find
out which addresses are usable. Unlike a TCP socket, where you can just try to connect() to each in
turn, you must implement the probing yourself, with your application code sending the probe messages
and replies, and handling timeouts.

The recvfrom() function can be used to receive UDP datagrams. This works in much the same way
as read(), except that it also takes an empty address structure (struct sockaddr *) that is filled in
with source address and port from the received datagram. This address can be used in a sendto() call to
send a reply. Each received datagram can come from a different source address.

int fd;
char buffer[...];
int buflen = sizeof(buffer);
struct sockaddr addr;
socklen_t alen = sizeof(addr);
int rlen;
...
rlen = recvfrom(fd, buffer, buflen, 0, &addr, &alen);
if (rlen < 0) {
// Error...

}

A UDP socket must be closed in the usual way, once you have finished using it, using the close()
system call.

Formative Exercise 3: UDP Client/Server Example

The formative exercise for this lab demonstrates how to build the most simple UDP-based client-server
application. You should write two programs:

udp_hello_server The server should listen for datagrams on UDP port 5008. It should read the first
datagram received, print the contents of that datagram and the IP address from which it came to the
screen, close the socket, then exit. You can use the inet_ntop() function to print an IP address.

udp_hello_client Your client should send the text “Hello, world!” in a UDP datagram to port 5008
of a host named on the command line, then it should close the socket. The client should take the
name of the machine on which the server is running as its single command line argument (i.e.,
if the server is running on machine bo720-1-01 you should run your client using the command
udp_hello_client bo720-1-01. For the purposes of this exercise, send the UDP datagram to
the first address that getaddrinfo() returns.

Run your client and server, and demonstrate that you can send the text “Hello, world!” from one to
the other. Try this with client and server running on the same machine, and with them running on two
different machines.

- + -

2


