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1 Introduction

The laboratory exercises for Networked Systems (H) will introduce you to network programming in C on
Unix systems using the Berkeley Sockets API, and help you understand the operation and structure of
the network. The laboratory exercises build on your knowledge of C programming from the Advanced
Programming (H) course, and introduce network programming in C. Other exercises illustrate key points
in the operation of the network.

The laboratory exercises are intended to complement the material covered in the lectures. Some
expand on the lectures to give you broader experience in a particular subject; others cover material, such
as network programming, that’s better taught by doing than by lecturing.

There are a mixture of formative and summative exercises. The formative exercises will give you
practice in programming networked systems in C, and are not assessed. The summative exercises test
your C programming skills, your ability to use the network by developing a networked system, and your
understanding of the network topology and routing.

This exercise is an introduction to TCP client/server programming in C, using the Berkeley Sockets
API. This is a formative exercise, and is not assessed.

2 Formative Exercise 1: Networked “Hello, World” Application

The first formative exercise demonstrates how to build a simple client-server application using TCP/IP.
You should write two programs:

hello_server The server should listen on TCP port 5000 for incoming connections. It should accept
the first connection made, receive all the data it can from that connection, print that data to the
screen, close the connection, and exit. If TCP port 5000 is in use on your systems, pick another
port number instead – the choice of port is unimportant for this exercise.

hello_client Your client should connect to your chosen TCP port on the host named on the command
line, send the text “Hello, world!”, then close the connection. The client should take the name
of the machine on which the server is running as its single command line argument (i.e., if the
server is running on machine bo720-1-01u.dcs.gla.ac.uk you should run your client using
the command hello_client bo720-1-01u.dcs.gla.ac.uk.

Run your client and server, and demonstrate that you can send the text “Hello, world!” from one to
the other. Try this with client and server running on the same machine, and with them running on two
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different machines. Once this is working, modify your client to send a much longer message (more than
1500 characters), and check that works too.

When you have large messages working, modify your client and server so that the server can send a
message back to the client. The client should send “Hello, world!”, then wait for and display the message
sent back by the server. The contents of the message returned by the server are unimportant.

Finally, modify your server to handle connections from multiple clients at once.
Write a simple Makefile to compile your code, rather than running the compiler by hand. You are

strongly advised to enable all compiler warnings (at minimum, use clang -W -Wall -Werror, noting
that the three occurrences of the letter W are capitalised), and to fix your code so it compiles without
warnings. Compiler warnings highlight code which is legal, but almost certainly doesn’t do what you
think it does (i.e., they show the location of bugs in your code). Use them to help you find problems.

This exercise is not assessed, and you do not need to submit your code. The assessed exercises later in
the course build on the skills you will learn in completing this formative exercise, however, so you should
complete this exercise carefully, and seek help if you have any questions about the material.

3 An Introduction to Network Programming in C

The standard API for network programming in C is Berkeley Sockets. This API was first introduced in
4.3BSD Unix, and is now available on all Unix-like platforms including Linux, macOS, iOS, Android,
FreeBSD, and Solaris. An almost identical API, known as WinSock, is available in Microsoft Windows.

The recommended reference book for the Berkeley Sockets API is W. R. Stevens, B. Fenner, and A.
M. Rudoff, “Unix Network Programming volume 1: The Sockets Networking API”, 3rd Edition, Addison
Wesley, 2003, ISBN 978-0131411555. Numerous on-line tutorials, of varying quality, also exist.

3.1 Creating a Socket

A socket provides an interface between the network and the application. There are two types of socket: a
stream socket provides reliable and in-order delivery of a byte stream, while a datagram socket provides
unreliable and unordered delivery of packets of data. When used in the Internet environment, stream
sockets correspond to TCP/IP connections and datagram sockets to UDP/IP datagrams. This exercise will
only consider TCP/IP socket programming, since this is the most widely used service, and forms the basis
for most Internet applications.

To use the sockets API, you must first include the appropriate header files in your source code:

#include <sys/types.h>
#include <sys/socket.h>

You create a socket by calling the socket() function, as follows (the ... indicates omitted code, where
you insert error handling and application logic):

...
int fd = socket(AF_INET, SOCK_STREAM, 0);
if (fd == -1) {
... // an error occurred

}
...

The socket() function takes three parameters. The first, AF_INET, selects the Internet address family,
IPv4; AF_INET6 would create an IPv6 socket. The second parameter, SOCK_STREAM, creates a TCP
socket; use SOCK_DGRAM to create a UDP datagram socket. The final parameter is not used with TCP
or UDP sockets, and set to zero. On success, this function returns an integer known as a file descriptor
that identifies the newly created socket. If an error occurs, the function returns -1 and sets the global
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variable errno to indicate the type of error (you can bring the definition of the errno variable include
scope using #include <errno.h>). The Unix man page for the socket() function lists the possible
errors, e.g., EACCES, each of which corresponds to a #define in the <errno.h> header file.

A newly created socket is not connected to the network. How you connect it to the network depends
whether you are making a server socket that waits for and accepts incoming connections from clients, or a
client socket that can make a connection to a server.

3.2 Implementing a TCP Server

To turn a newly created socket into a TCP server, you bind the socket to a port, on which it listens for
connections. The clients connect to a server based on the combination of a network address and port
number. After establishing the connection, either client or server can write data into their socket, where it
becomes available for the other to read.

Each different type of server uses a different port number. Port numbers are 16-bit unsigned integers,
in the range 0-65535. Some port numbers are well known, for example web servers use port 80, while
others are more obscure. The IANA maintains the master list of registered port numbers for different
types of server (see http://www.iana.org/assignments/service-names-port-numbers/). Port
numbers 0-1023 are generally reserved for system services, and are not accessible to non-admin users on
Unix-like systems.

The process for making a TCP server is therefore to create a socket, bind that socket to a port, listen
for connections on that port, then loop accepting new connections and responding to requests.

You bind a socket to a port using the bind() function. This takes three parameters: a file descriptor,
fd that was previously returned from a socket() call, a pointer to an address structure that contains the
port number, and the size of that structure:

...
if (bind(fd, (struct sockaddr *) &addr, sizeof(addr)) == -1) {
... // an error occurred

}
...

The bind() function returns -1 and sets errno if an error occurs; it returns zero on success.
The addr parameter to the bind() function is a pointer to a variable of type struct sockaddr.

The <sys/socket.h> and <netinet/in.h> headers define this as follows (you don’t need to copy this
definition, just #include both those headers if you need it):

struct sockaddr {
uint8_t sa_len;
sa_family_t sa_family;
char sa_data[22];

}

A variable of type struct sockaddr can hold any type of address. The sa_len and sa_family fields
hold the size and type of the address, while the sa_data field contains the data, and is large enough
to contain any address. Applications do not use struct sockaddr directly. Rather, if they use IPv4
addresses, they instead use a struct sockaddr_in which is defined as:

struct in_addr {
in_addr_t s_addr;

}

struct sockaddr_in {
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uint8_t sin_len;
sa_family_t sin_family;
in_port_t sin_port;
struct in_addr sin_addr;
char sin_pad[16];

}

or for IPv6 addresses, they use a struct sockaddr_in6:

struct in6_addr {
uint8_t s6_addr[16];

}

struct sockaddr_in6 {
uint8_t sin6_len;
sa_family_t sin6_family;
in_port_t sin6_port;
uint32_T sin6_flowinfo;
struct in6_addr sin6_addr;

}

Again, note that the sockaddr_in, in_addr, sockaddr_in6, and in6_addr types, are defined in the
<sys/socket.h> and <netinet/in.h> headers. Don’t define them yourself, just #include those headers
if you need them.

You’ll note that a struct sockaddr_in is exactly the same size in bytes as struct sockaddr,
and has the sin_len and sin_family fields in exactly the same place as the sa_len and sa_family
fields. Similarly, the sin_port, sin_addr and sin_pad fields replace the sa_data field. A struct
sockaddr_in can therefore be freely cast to a struct sockaddr, and vice versa, since they have the
same size, and the common fields are in the same place in memory. The same is true for IPv6, with the
struct sockaddr_in6. This allows for a primitive form on sub-classing, where the sockets functions
take a generic structure (struct sockaddr) while the program uses a variant specific to IPv4 (struct
sockaddr_in) or IPv6 (struct socaddr_in6) and casts to/from struct sockaddr as appropriate.

When calling bind() to create a server socket, you therefore create either a sockaddr_in or
sockaddr_in6 structure, fill in the family and port number, indicate that any available network address
is suitable, and leave the other fields unspecified. For example, to create an IPv4 server bound to port 80,
you’d write:

struct sockaddr_in addr;

addr.sin_addr.s_addr = INADDR_ANY;
addr.sin_family = AF_INET;
addr.sin_port = htons(80);

if (bind(fd, (struct sockaddr *) &addr, sizeof(addr)) == -1) {
... // an error occurred

}
...

The use of INADDR_ANY lets the server use any available network interface, if it’s running on a host with
more than one network connection.

After binding a socket to a port, you instruct the operating system to begin listening for connections
on that port by calling listen():

...
int backlog = 10;
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...
if (listen(fd, backlog) == -1) {
... // an error occurred

}
...

The value of the backlog parameter to the listen() function specifies the number of simultaneous
clients that can queue up waiting for the server to accept their connections, before it starts giving a
“connection refused” to new clients (note: this is not the maximum number of clients that can connect, but
rather the maximum number of clients that can be waiting for the server to accept() their connection at
once; a value of 10 is reasonable unless your server is slow to accept connections).

The server calls socket(), bind(), and listen() once to create the listening socket, then calls the
accept() function in a loop to accept connections from clients:

...
while (...) {
struct sockaddr_in cliaddr;
socklen_t cliaddr_len = sizeof(cliaddr);

int connfd = accept(fd, (struct sockaddr *) &cliaddr, &cliaddr_len);
if (connfd == -1) {
... // an error occurred

}
...

}

On success, accept() returns a new file descriptor, called connfd in this example, representing the
connection to the client. It sets cliaddr to the address of the client, and cliaddr_len to the length of
that address. If there are no clients waiting, then the accept() function blocks until a client connects.

3.3 Implementing a TCP Client

To turn a newly created socket into a TCP client, call the connect() function. This takes three parameters:
the file descriptor of the newly created socket, the address and port of the server it should connect to (cast
to a struct sockaddr), and the size of the address:

struct sockaddr_in addr; // Or struct sockaddr_in6 if using IPv6

if (connect(fd, (struct sockaddr *) &addr, sizeof(addr)) == -1) {
... // an error occurred

}

The difficulty with connect() is knowing what is IP address of the server, to put into the struct
sockaddr (you usually know the DNS name of the server, but not the IP address). The port number is
assumed to be known, since it’s fixed for each application.

You can look up the IP address of a server given a DNS name using the getaddrinfo() function.
This function takes as parameters the server name, port, and hints about the type of address required, and
returns a linked list of possible IP addresses for the server (a server can have multiple IP addresses if it
has multiple network connections for robustness against network outages, or if it has both IPv4 and IPv6
addresses). You then need to iterate through the list of addresses, trying each in turn until you succeed in
making a connection to the server.

For example, to connect to a server called “www.example.com” on port 80, you would use code like:
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struct addrinfo hints;
struct addrinfo *ai0;
int i;

memset(&hints, 0, sizeof(hints));
hints.ai_family = PF_UNSPEC; // Unspecified protocol (IPv4 or IPv6 okay)
hints.ai_socktype = SOCK_STREAM; // Want a TCP socket
if ((i = getaddrinfo("www.example.com", "80", &hints, &ai0)) != 0) {
printf("Error: unable to lookup IP address: %s", gai_strerror(i));
...

}
// ai0 is a pointer to the head of a linked list of struct addrinfo
// values containing the possible addresses of the server; interate
// through the list, trying to connect to each turn, stopping when
// a connection succeeds:
struct addrinfo *ai;
int fd;

for (ai = ai0; ai != NULL; ai = ai->ai_next) {
fd = socket(ai->ai_family, ai->ai_socktype, ai->ai_protocol);
if (fd == -1) {
// Unable to create socket, try next address in list
continue;

}
if (connect(fd, ai->ai_addr, ai->ai_addrlen) == -1) {
// couldn't connect to the address, try next in list
close(fd);
continue;

}
break; // successfully connected

}
if (ai == NULL) {
... // Couldn't connect to any of the addresses, handle failure...

} else {
// Successfully connected: fd is a file descriptor of a socket
// connected to the server; use the connection
...

}

The Unix manual page for the getaddrinfo() function explains all the fields of the struct addrinfo,
and explains how to use this function in more detail.

3.4 Sending and Receiving Data

Once the client has connected to the server, you can send and receive data over the connection using the
send() and recv() functions. The send() function takes as arguments a file descriptor of a connected
socket, a pointer to the data (char *), the size of the data in bytes, and a set of flags. A useful flag to set
is MSG_NOSIGNAL, which makes send() to return an error if the far end closes the connection, rather
than delivering a SIGPIPE signal (which kills the process, if not handled):

char *data = ".....";
size_t data_len = ...;
int flags = MSG_NOSIGNAL;
...
if (send(fd, data, data_len, flags) == -1) {
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... // error
}
...

On success, send() returns the number of bytes it sent (which might be less than data_len, if the
network is congested). If an error occurs, it returns -1 and sets errno. A call to send() can take a long
time to complete, depending on the speed of the network and the amount of data sent.

The recv() function take as parameters a connected socket, a pointer to a buffer in which to store the
data, the size of the buffer, and a set of flags (a flag that’s sometimes useful is MSG_PEEK, which peeks at
incoming data without removing it from the connection, but it’s usual not to set any flags). On success,
recv() returns the number of bytes read. If an error occurs, it returns -1 and sets errno:

#define BUFLEN 1500
...
ssize_t rcount;
char buf[BUFLEN];
int flags = 0; // No flags set
...
rcount = recv(fd, buf, BUFLEN, flags);
if (rcount == -1) {
... // error

}
...

Note that the recv() function does not add a terminating zero byte to the data it reads, so it is unsafe
to use string functions on the data unless you add the terminator yourself. Note also that recv() will
silently overflow the buffer and corrupt memory if the buffer length passed to the function is too short.
These are significant security risks, so be careful.

A TCP connection buffers data, so data written with a single call to send() might arrive split across
more than one recv() call. Alternatively, data from more than one send() request might arrive in a
single recv() call. TCP sockets deliver data reliably and in-order, but the timing and message boundaries
are not necessarily preserved.

The recv() call will block if there is nothing available to read from the socket. The send() call will
block until it is able to send some data (send() may return after sending only some of the data requested,
if the network is heavily congested - you need to check the return value to see if it sent all the data).

3.5 Handling Multiple Sockets

It’s common to have more than one socket open at once. An example might be a server that has multiple
clients connected, perhaps a web server that is serving multiple pages at once.

On modern multi-core systems, the best way of handling multiple sockets is often to use multiple
threads, one per socket, to send and receive data, since this allows each socket to proceed concurrently
with the others. One thread uses bind() and listen() to setup the socket, then calls accept() in a
loop to accept and process new connections. The file descriptor returned from each call to accept() is
passed to a new thread that handles the connection, sending and receiving data as needed, and closes the
file descriptor when done. Since there is only one listening socket, there’s no benefit to calling accept()
from multiple threads: the correct pattern is to have one thread accepting connections, and pass those new
connections to members of a thread pool for processing.

When passing the file descriptor from the accepting thread to the thread that will handle the connection,
it’s important to avoid a race condition with the following accept() call. Use malloc() to allocate
space, copy the file descriptor into that space, and pass the copy to the thread, to avoid looping round and
overwriting the file descriptor with the results of the next call to accept().
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An alternative to multi-threading is to use the select() function, which monitors multiple sockets
to see if they have data available to receive, or space to send. This lets a single thread handle more than
one socket. An example of using select() to receive from two sockets, with a timeout, is show below:

#include <sys/select.h>

int fd1, fd2;
fd_set rfds;
struct timeval timeout;

timeout.tv_sec = 1; // 1 second timeout; pass NULL as the last
timeout.tv_usec = 0; // argument to select() for no timeout

FD_ZERO(&rfds); // Create the set of file descriptors to
FD_SET(fd1, &rfds); // select upon (limited to FD_SETSIZE as
FD_SET(fd2, &rfds); // as defined in <sys/select.h>)

// The nfds argument is the value of the largest file descriptor
// used, plus 1 (note: not the number of file descriptors used).
int nfds = max(fd1, fd2) + 1;

int rc = select(nfds, &rfds, NULL, NULL, &timeout);
if (rc == 0) {
... // timeout, with nothing available to recv()

} else if (rc > 0) {
if (FD_ISSET(fd1, &rfds)) {

... // Data is available to recv() from fd1
}
if (FD_ISSET(fd2, &rfds)) {

... // Data is available to recv() from fd2
}

} else if (rc < 0) {
... // error

}

Using select() can be more efficient when connections are very short-lived, or if there are many
more connections than processor cores so it’s necessary to manage multiple connections per thread. The
select() call is portable, but is slow when given a large number of connections to monitor. If you
need to monitor hundreds or thousands of file descriptors at once, there are non-portable alternative such
as epoll() on Linux or kqueue on FreeBSD/macOS that scale better. Alternatively, libraries such as
libuv that provide portable abstractions for event-based I/O that efficiently support very large numbers
of simultaneous connections.

3.6 Closing Connections

Once you have finished with the connection, call the close() function to terminate it:

close(fd);

Remember to close the connection at both the client and the server ends. For a server socket, close the
per-connection file descriptor when you have finished with that connection, and the close underlying file
descriptor when you have finished accepting new connections.

When closing a connection, the client should call close() before the server. This is because the
system that calls close() will enter a “time wait” state where it doesn’t allow another socket to bind to
the same port until some timeout has expired, to make sure any late arriving data doesn’t end up in the
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wrong connection. A consequence is that, if the server crashes or otherwise closes the connection before
the client, then you won’t be able to restart it until the timeout expires (the bind() call will fail and return
an EADDRINUSE error). Setting the SO_REUSEADDR socket option avoids the timeout, but introduces a
security hole by allowing data from a previous connection to appear on the new connection, so should not
be used.

- + -
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