
Colin Perkins | https://csperkins.org/ | Copyright © 2017 | This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-nd/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Writing Secure Code

Networked Systems (H)
Lecture 18

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Lecture Outline

• Developing secure network applications:
• The robustness principle

• Validating input data

• Writing secure code:
• Example: classic buffer overflow attack

• Arbitrary code execution

• Discussion

2

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

The Robustness Principle (Postel’s Law)

3

At every layer of the protocols, there is a general rule whose
application can lead to enormous benefits in robustness and
interoperability:

 “Be liberal in what you accept, and
 conservative in what you send"

Software should be written to deal with every conceivable
error, no matter how unlikely; sooner or later a packet will
come in with that particular combination of errors and
attributes, and unless the software is prepared, chaos can
ensue. In general, it is best to assume that the network is
filled with malevolent entities that will send in packets
designed to have the worst possible effect. This assumption
will lead to suitable protective design, although the most
serious problems in the Internet have been caused by
un-envisaged mechanisms triggered by low-probability events;
mere human malice would never have taken so devious a course! R

FC
11

22

• Balance interoperability with security – don’t be too liberal in what you accept;
a clear specification of how and when you will fail might be more appropriate

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

The Robustness Principle (Postel’s Law)

4

“Postel lived on a network with all his friends.
We live on a network with all our enemies.
Postel was wrong for todays internet.”

— Poul-Henning Kamp

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Validating Input Data

http://xkcd.com/327/

5

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Validating Input Data

• Networked applications fundamentally dealing with data supplied by
un-trusted third parties
• Data read from the network may not conform to the protocol specification

• Due to ignorance and/or bugs

• Due to malice, and a desire to disrupt services

• Must carefully validate all data before use

6

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Writing Secure Code

• The network is hostile: any networked application is security critical
• Must carefully specify behaviour with both correct and incorrect inputs

• Must carefully validate inputs and handle errors

• Must take additional care if using type- and memory-unsafe languages, such
as C and C++, since these have additional failure modes

7

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Example: Classic Buffer Overflow Attack

• Memory-safe programming languages check array bounds
• Fail cleanly with exception on out-of-bound access

• Behaviour is clearly defined at all times

• Unsafe languages, such as C and C++, don’t check
• Responsibility of the programmer to ensure bounds are not violated

• Easy to get wrong – typically results in a “core dump” – or undefined
behaviour

• What actually happens here?

8

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Function Calls and the Stack

// overflow.c
#include <string.h>
#include <stdio.h>

static void
foo(char *src)
{
 char dst[12];

 strcpy(dst, src);
}

int
main(int argc, char *argv[])
{
 char hello[] = "Hello, world\n";

 foo(argv[1]);
 printf("%s", hello);
 return 0;
}

What happens when argv[1]
is longer than 12 bytes?

9

$ gcc overflow.c -o overflow
$./overflow 123456789012
Hello, world
$./overflow 1234567890123
Abort trap (core dumped)
$

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Function Calls and the Stack

// overflow.c
#include <string.h>
#include <stdio.h>

static void
foo(char *src)
{
 char dst[12];

 strcpy(dst, src);
}

int
main(int argc, char *argv[])
{
 char hello[] = "Hello, world\n";

 foo(argv[1]);
 printf("%s", hello);
 return 0;
}

10

Parameters

Local variables
for foo(...)

...unused...

0xbfe710fc

0xbfe71108

0xbfe71110

char dst[12]

char *src

Return Address

Local variables
for main(...)

Example of call stack within the
call to the function foo()

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Function Calls and the Stack

• The strcpy() call doesn’t check
array bounds

• Overwrites the function return
address on stack, along with the
following memory locations

• If malicious, we can write
executable code into this space,
set return address to jump into our
code…

Parameters

Local variables
for foo(...)

...unused...

0xbfe710fc

0xbfe71108

0xbfe71110

char dst[12]

char *src

Example of call stack within the
call to the function foo() 11

Return Address

Local variables
for main(...)

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Arbitrary Code Execution

• Buffer overflows in network code are one of the main sources of
security problems
• If you write network code in C/C++, be very careful to check array bounds

• If your code can be crashed by received network traffic, it probably has an
exploitable buffer overflow

• http://insecure.org/stf/smashstack.html

12

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Discussion

• Many networked applications written in memory- or type-unsafe
languages
• Many good historical reasons for this, and clearly will take time to replace old

deployments with safe alternatives

• Is it justifiable to write new networked code in this way, now that there are
safe alternatives?
• Java, C#, Swift, Rust, …

• As engineers, we have a duty to use best practices – could you defend your
implementation choices?

13

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

