YEARS OF
COMPUTING

University

& of Glasgow 60
School of
Computing Science

AT GLASGOW

TCP

Networked Systems (H)
Lecture 13

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/

Lecture Outline

 Berkeley Sockets API
 The TCP protocol

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

The Berkeley Sockets API

 Widely used low-level C networking API
e Firstintroduced in 4.BSD Unix

e Now available on most platforms: Linux, MacOS X, Windows, FreeBSD,

Solaris, etc.

e Largely compatible cross-platform

« Recommended reading:

e Stevens, Fenner, and Rudoff, “Unix Network Programming
volume 1: The Sockets Networking API”, 3rd Edition,
Addison-Wesley, 2003.

Programming E

The Sockets Networking API
THIRD EDITIO)!

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Concepts

e Sockets provide a standard interface
between network and application

e Two types of socket:

e Stream — provides a virtual circuit service

e Datagram — delivers individual packets

e Independent of network type:

(__Socket) . Commonly used with TCP/IP and UDP/IP, but
I not specific to the Internet protocols
o Will discuss TCP/IP today, UDP next week

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

TCP Sockets

[Client)

Network

int fd = socket(...)

connect(fd, ..., ...)
send(fd, data, datalen,

recv(fd, buffer, buflen,

close(£fd)

flags)

flags)

4)
Server
fd connfd
v
?
—fe
>\ Socket
int fd = socket(...)
bind(fd, ..., ...)
listen(fd, ...)
—» connfd = accept(fd, .)
recv(connfd, buffer, buflen, flags)
send(connfd, data, datalen, flags)

—— close(connfd)

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

What services do TCP sockets provide?

o TCP provides five key features:
e Service differentiation
e Connection-oriented
e Point-to-point
e Reliable, in-order, delivery of a byte stream
e Congestion control

 These are provided by the operating system, via the sockets API

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Client-server or peer-to-peer?

o Sockets initially unbound, and can either accept or make a
connection

 Most commonly used in a client-server fashion:

* One host makes the socket 1isten () for, and accept (), connections on a
well-known port, making it into a server
* The port is a 16-bit number used to distinguish servers

 E.g. web server listens on port 80, email server on port 25

* The other host makes the socket connect () to that port on the server

* Once connection is established, either side can send () data into the
connection, where it becomes available for the other side to recv ()

e Simultaneous connections are possible, using TCP in a peer-to-
peer manner

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Role of the TCP Port Number

Port Range Name Intended use
0 1023 Well-known (system) ports Trusted operating system services
1024 49151 Registered (user) ports User applications and services
: Private use, peer-to-peer applications,
49152 | 65535 Dynamic (ephemeral) ports source ports for TCP client connections
 Servers must listen on a known * TCP clients traditionally connect
port; IANA maintains a registry from a randomly chosen port in

* Distinction between system and the ephemeral range

user ports ill-advised — security e The port must be chosen randomly, to

problems resulted prevent spoofing attacks
« Many systems use the entire port range

* [nsufficient port space available for source ports, to increase the amount
(>75% of ports are registered) of randomness available

http://www.iana.org/assignments/port-numbers

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

TCP Connection Setup

e Connections use 3-way handshake

The SYN and ACK flags in the TCP header signal
connection progress

Initial packet has SYN bit set, includes randomly
chosen initial sequence number

Reply also has SYN bit set and randomly chosen
sequence number, acknowledges initial packet

Handshake completed by acknowledgement of
second packet

Happens during the connect ()/accept () calls

e Combination ensures robustness

Randomly chosen initial sequence numbers give
robustness to delayed packets or restarted hosts

* Acknowledgements ensure reliability

ime

Similar handshake ends connection,
with FIN bits signalling the teardown

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Reading and Writing Data

#define BUFLEN 1500

ssize_ t ij;
ssize_t rcount;
char buf [BUFLEN] ;

rcount = recv(fd, buf, BUFLEN, 0);
if (rcount == -1) {
// Error has occurred

}

for (i = 0; i < rcount; i++) {
printf (“%c”, buf[i]);
}

char data[] = “Hello, world!”;
int datalen = strlen(data);

if (send(fd, data, datalen, 0) == -1) {
// Error has occurred

The recv () call reads up to BUFLEN
bytes of data from connection — blocks
until data available

Returns actual number of bytes read,
or —1 on error

Data is not null terminated

The send () call sends data via a
socket: blocks until all data can be
written

Returns actual number of bytes
written, or -1 on error

10

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Record Boundaries in TCP Connections

 If the data in a send () is bigger than the data link layer MTU, TCP
will send the data as fragments

o Similarly, multiple small send () requests may be aggregated into a
single TCP packet

* Implication: the data returned by a recv () doesn’'t necessarily
match that sent in a single send ()

* There often appears to be a correspondence, but this is not guaranteed
(it may work in the lab, but not when you use it over a different link)

11

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Application Level Framing

Data may arrive in arbitrary sized chunks; must parse and understand
the data, no matter where it is split by the network — it's a byte stream
(colours indicate one possible split of the data into chunks)

HTTP/1.1 200 OK Example: HTTP response
Date: Mon, 19 Jan 2009 22:25:40 GMT

Server: Apache/2.0.46 (Scientific Linux) K K blank |
Last-Modified: Mon, 17 Nov 2003 08:06:50 GMT nown marker (blank line)

ETag: "57cOcd-e3e-17901a80" signals end of headers
Accept-Ranges: bytes

Content-Length: 3646 Size of payload indicated
Connection: close

Content-Type: text/html; charset=UTF-8 in the headers
<HTML>
<HEAD>
<TITLE>Computing Science, University of Glasgow </TITLE>
</BODY>
</HTML>

12

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

TCP Reliability

e TCP connections are reliable Host A Host B
e Application data gathered into packets .
e Each packet has a sequence number and an e = 6
acknowledgement number d (=6
= ack =
* Sequence number counts how many bytes are sent _
. : e . =8 ack=7
(this example is unrealistic, since it shows one byte
being sent per packet) Seq = 9 TRl ack=8
* Acknowledgement number specifies next byte ‘S&Qj%\‘
expected to be received ggq{\ ack = 8
* Cumulative positive acknowledgement \\‘ ack =8
» Only acknowledge contiguous data packets (sliding Mack=8
window protocol, so several data packets in flight)
* Duplicated acknowledgements imply loss
o TCP layer retransmits lost packets — this is . .
invisible to the application = =
4 4

13

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

TCP Reliability: How is Loss Detected

Time

Host B

ack=6
ack =7
ack =7
ack =9
ack =10
ack = 11
ack =12

e Packet reordering also causes duplicate ACKs

» Gives appearance of loss, when the data was merely

delayed

e TCP uses triple duplicate ACK to indicate loss

e Four identical ACKs in a row

e Slightly delays response to loss, but makes TCP
more robust to reordering

14

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Head of Line Blocking in TCP

e Data delivered in order, even after loss occurs

e TCP will retransmit the missing data, transparently to the application

* Arecv() for missing data will block until it arrives; TCP always delivers

data in an in-order contiguous sequence

Sender
seq=0

A
)
Q
@,
<
)
-

1500 b
seq = 1500 yies

seq = 3000

seq = 4500 ———y
seq = 6000 ==

seq = 7500

seq = 9000

seq =4500 =

seq =1 OSOOV

v v v W vl

ack = 1500
ack = 3000
ack = 4500

ack = 4500

ack = 4500

ack = 4500

recv() =» 1500 bytes
recv() =» 1500 bytes

recv() =» 1500 bytes

recv () blocks

\4

ack = 10500 recv() » 6000 bytes
v

15

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Summary

 The Berkeley Sockets API
e Services provided by TCP
e Reliability
e Unframed byte stream

e Head of line blocking

* Next lecture: congestion control

16

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

