
Colin Perkins | https://csperkins.org/ | Copyright © 2017 | This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-nd/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

TCP

Networked Systems (H)
Lecture 13

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Lecture Outline

• Berkeley Sockets API

• The TCP protocol

2

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

The Berkeley Sockets API

• Widely used low-level C networking API

• First introduced in 4.BSD Unix
• Now available on most platforms: Linux, MacOS X, Windows, FreeBSD,

Solaris, etc.

• Largely compatible cross-platform

• Recommended reading:
• Stevens, Fenner, and Rudoff, “Unix Network Programming  

volume 1: The Sockets Networking API”, 3rd Edition,  
Addison-Wesley, 2003.

3

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Concepts

Network

Socket

Application

• Sockets provide a standard interface
between network and application

• Two types of socket:
• Stream – provides a virtual circuit service

• Datagram – delivers individual packets

• Independent of network type:
• Commonly used with TCP/IP and UDP/IP, but

not specific to the Internet protocols

• Will discuss TCP/IP today, UDP next week

4

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

TCP Sockets

5

bind(fd, ..., ...)

Network

Client

int fd = socket(...)

Server

listen(fd, ...)

connfd = accept(fd, ...)

recv(connfd, buffer, buflen, flags)

send(connfd, data, datalen, flags)

close(connfd)

connect(fd, ..., ...)

send(fd, data, datalen, flags)

recv(fd, buffer, buflen, flags)

close(fd)

int fd = socket(...)

Socket

fd

Socket

fd connfd

?

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

What services do TCP sockets provide?

• TCP provides five key features:
• Service differentiation

• Connection-oriented

• Point-to-point

• Reliable, in-order, delivery of a byte stream

• Congestion control

• These are provided by the operating system, via the sockets API

6

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Client-server or peer-to-peer?

• Sockets initially unbound, and can either accept or make a
connection

• Most commonly used in a client-server fashion:
• One host makes the socket listen() for, and accept(), connections on a

well-known port, making it into a server
• The port is a 16-bit number used to distinguish servers

• E.g. web server listens on port 80, email server on port 25

• The other host makes the socket connect() to that port on the server

• Once connection is established, either side can send() data into the
connection, where it becomes available for the other side to recv()

• Simultaneous connections are possible, using TCP in a peer-to-
peer manner

7

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Role of the TCP Port Number

• Servers must listen on a known
port; IANA maintains a registry

• Distinction between system and
user ports ill-advised – security
problems resulted

• Insufficient port space available
(>75% of ports are registered)

• TCP clients traditionally connect
from a randomly chosen port in
the ephemeral range

• The port must be chosen randomly, to
prevent spoofing attacks

• Many systems use the entire port range
for source ports, to increase the amount
of randomness available

8

Port Range Name Intended use

0 1023 Well-known (system) ports Trusted operating system services

1024 49151 Registered (user) ports User applications and services

49152 65535 Dynamic (ephemeral) ports Private use, peer-to-peer applications,
source ports for TCP client connections

RFC 6335

http://www.iana.org/assignments/port-numbers

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

TCP Connection Setup

• Connections use 3-way handshake
• The SYN and ACK flags in the TCP header signal

connection progress

• Initial packet has SYN bit set, includes randomly
chosen initial sequence number

• Reply also has SYN bit set and randomly chosen
sequence number, acknowledges initial packet

• Handshake completed by acknowledgement of
second packet

• Happens during the connect()/accept() calls

• Combination ensures robustness
• Randomly chosen initial sequence numbers give

robustness to delayed packets or restarted hosts

• Acknowledgements ensure reliability

9

SYN, ACK = x, seq = y

SYN, seq = x

Host A

Ti
m

e

Host B

Ti
m

e

ACK = y

Similar handshake ends connection,
with FIN bits signalling the teardown

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Reading and Writing Data

• The recv() call reads up to BUFLEN
bytes of data from connection – blocks
until data available

• Returns actual number of bytes read,
or -1 on error

• Data is not null terminated

• The send() call sends data via a
socket; blocks until all data can be
written

• Returns actual number of bytes
written, or -1 on error

10

#define BUFLEN 1500
...
ssize_t i;
ssize_t rcount;
char buf[BUFLEN];
...
rcount = recv(fd, buf, BUFLEN, 0);
if (rcount == -1) {
 // Error has occurred
 ...
}
...
for (i = 0; i < rcount; i++) {
 printf(“%c”, buf[i]);
}

char data[] = “Hello, world!”;
int datalen = strlen(data);
...
if (send(fd, data, datalen, 0) == -1) {
 // Error has occurred
 ...
}
...

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Record Boundaries in TCP Connections

• If the data in a send() is bigger than the data link layer MTU, TCP
will send the data as fragments

• Similarly, multiple small send() requests may be aggregated into a
single TCP packet

• Implication: the data returned by a recv() doesn’t necessarily
match that sent in a single send()
• There often appears to be a correspondence, but this is not guaranteed 

(it may work in the lab, but not when you use it over a different link)

11

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Application Level Framing

12

HTTP/1.1 200 OK
Date: Mon, 19 Jan 2009 22:25:40 GMT
Server: Apache/2.0.46 (Scientific Linux)
Last-Modified: Mon, 17 Nov 2003 08:06:50 GMT
ETag: "57c0cd-e3e-17901a80"
Accept-Ranges: bytes
Content-Length: 3646
Connection: close
Content-Type: text/html; charset=UTF-8

<HTML>
<HEAD>
<TITLE>Computing Science, University of Glasgow </TITLE>
...
</BODY>
</HTML>

Data may arrive in arbitrary sized chunks; must parse and understand 
the data, no matter where it is split by the network – it’s a byte stream
(colours indicate one possible split of the data into chunks)

Example: HTTP response

Known marker (blank line)
signals end of headers

Size of payload indicated
in the headers

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

TCP Reliability

• TCP connections are reliable
• Application data gathered into packets

• Each packet has a sequence number and an
acknowledgement number
• Sequence number counts how many bytes are sent

(this example is unrealistic, since it shows one byte
being sent per packet)

• Acknowledgement number specifies next byte
expected to be received
• Cumulative positive acknowledgement

• Only acknowledge contiguous data packets (sliding
window protocol, so several data packets in flight)

• Duplicated acknowledgements imply loss

• TCP layer retransmits lost packets – this is
invisible to the application

Host A

Ti
m

e

Host B

Ti
m

e

x

seq = 5
seq = 6
seq = 7
seq = 8
seq = 9
seq = 10
seq = 11

ack = 6
ack = 7

ack = 8

ack = 8
ack = 8

ack = 8

13

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

TCP Reliability: How is Loss Detected

• Packet reordering also causes duplicate ACKs
• Gives appearance of loss, when the data was merely

delayed

• TCP uses triple duplicate ACK to indicate loss
• Four identical ACKs in a row

• Slightly delays response to loss, but makes TCP
more robust to reordering

Host A

Ti
m

e

Host B

Ti
m

e

seq = 5
seq = 6
seq = 7
seq = 8
seq = 9
seq = 10
seq = 11

ack = 6
ack = 7
ack = 7

ack = 10
ack = 11
ack = 12

ack = 9

14

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Head of Line Blocking in TCP

• Data delivered in order, even after loss occurs
• TCP will retransmit the missing data, transparently to the application

• A recv() for missing data will block until it arrives; TCP always delivers
data in an in-order contiguous sequence

15

Sender Receiver
seq = 0
seq = 1500
seq = 3000
seq = 4500
seq = 6000

seq = 7500

ack = 1500

ack = 3000
ack = 4500

ack = 4500

ack = 4500
seq = 9000

1500 bytes
recv() ! 1500 bytes
recv() ! 1500 bytes
recv() ! 1500 bytes

recv() ! 6000 bytes

recv() blocks

x

ack = 4500

ack = 10500

seq = 4500

seq = 10500

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Summary

• The Berkeley Sockets API

• Services provided by TCP
• Reliability

• Unframed byte stream

• Head of line blocking

• Next lecture: congestion control

16

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

