

School of Computing Science

Intra-domain Routing (1)

Networked Systems (H) Lecture 9

Lecture Outline

- Routing concepts
- Intra-domain unicast routing
 - Distance vector protocols

• ...

Routing

- Network layer responsible for routing data from source to destination across multiple hops
 - Nodes learn (a subset of) the network topology and run a routing algorithm to decide where to forward packets destined for other hosts
 - End hosts usually have a simple view of the topology ("my local network" and "everything else") and a simple routing algorithm ("if it's not on my local network, send it to the default gateway")
 - Gateway devices ("routers") exchange topology information, decide best route to destination based on knowledge of the entire network topology

Unicast Routing

- Routing algorithms to deliver packets from a source to a single destination
- Choice of algorithm affected by usage scenario
 - Intra-domain routing
 - Inter-domain routing
 - Politics and economics

Routing in the Internet

Intra-domain Unicast Routing

- Each network administered separately
 an autonomous system (AS)
 - Different technologies
 - Different policies
 - Mutual distrust between AS and its peers; between AS and its customers

Intra-domain Unicast Routing

- Routing within an AS
 - Single trust domain
 - No policy restrictions on who can determine network topology
 - No policy restrictions on which links can be used
 - Desire efficient routing → shortest path
 - Make best use of the network you have available
 - Two approaches
 - Distance vector the Routing Information Protocol (RIP)
 - Link state Open Shortest Path First routing (OSPF)

Distance Vector Routing

- Each node maintains a vector containing the distance to every other node in the network
 - Periodically exchanged with neighbours, so eventually each node knows the distance to all other nodes
 - The routing table "converges" on a steady state
 - Links which are down or unknown have distance = ∞
- Forward packets along route with least distance to destination

Destination	Cost	Next Hop
В	8	-
С	8	-
D	8	-
E	8	-
F	8	-
G	∞	-

Information stored at node A, to allow routing to the other nodes

- This example uses names (A, B, C, ...) to keep the diagram readable
- Real implementations identify nodes by their IP address, or by IP prefixes if routing to networks
- Initially table is empty know of no other nodes

Corresponding tables at every other node

Routing Table at Node A

e A	Destination	Cost	Next Hop
Nod	В	1	В
Routing Table at Node $ extcape$	С	1	С
able	D	8	-
g Ta	E	1	Е
utin	F	1	F
Ro	G	∞	-

Time: 0

Nodes initialised; only know their immediate neighbours

		Α	В	С	D	Ш	F	G
Node	Α	0	1	1	8	1	1	8
at No	В	1	0	1	8	8	8	8
	С	1	1	0	1	8	8	∞
Stored	D	8	8	1	0	8	8	1
	Е	1	8	8	8	0	8	8
nformation	F	1	8	8	8	8	0	1
Infor	G	8	8	8	1	8	1	0

Time: 1

Nodes also know neighbours of their neighbours – routing data has spread one hop

Distance to Reach Node

			_					
		Α	В	С	D	ш	ш	G
ode	Α	0	1	1	2	1	1	2
at No	В	1	0	1	2	2	2	8
ed s	С	1	1	0	1	2	2	2
Stor	D	2	2	1	0	8	2	1
ion	Ш	1	2	2	8	0	2	∞
maf	F	1	2	2	2	2	0	1
Information Stored at Node	G	2	∞	2	1	8	1	0

Routing Table at Node A

	Destination	Cost	Next Hop
1000	В	1	В
- ה	С	1	С
	D	2	C
	E	1	Ш
	F	1	F
	G	2	F

Time: 2

Routing data has spread two hops – table complete

Distance to Reach Node

_						_		
		Α	В	С	D	ш	F	G
əpc	Α	0	1	1	2	1	1	2
at N	В	1	0	1	2	2	2	3
e pa.	О	1	1	0	1	2	2	2
Stor	D	2	2	1	0	3	2	1
ion	Ш	1	2	2	3	0	2	3
mat	귀	1	2	2	2	2	0	1
Information Stored at Node	G	2	3	2	1	3	1	0
_		-						

Routing Table at Node A

	Destination	Cost	Next Hop
14000	В	1	В
םו	С	1	С
ablo	D	2	С
	Ш	1	Е
South 19	F	1	F
	G	2	F

Nodes continue to exchange distance metrics in case the topology changes

Distance to Reach Node

	Α	В	C	D	ш	ш	G	
Α	0	1	1	2	1	1	2	
В	1	0	1	2	2	2	3	
С	1	1	0	1	2	2	2	
D	2	2	1	0	3	2	1	
Е	1	2	2	3	0	2	3	
F	1	2	2	2	2	0	1	
G	2	3	2	1	3	1	0	

Information Stored at Node

Destination Cost Next Hop В В C D Ε Ε F F G F

е А	Destination	Cost	Next Hop
Vod	В	1	В
Table at Node A	С	1	С
able	D	2	С
-	E	1	Е
Routing	F	1	F
Ro	G	2	F

Time: 4

Link between F and G fails F and G notice, set the link distance to ∞, and pass an update to A and D

Distance to Reach Node

		Α	В	С	D	Е	F	G
ode	Α	0	1	1	2	1	1	2
at Node	В	1	0	1	2	2	2	3
	С	1	1	0	1	2	2	2
Stored	D	2	2	1	0	3	2	1
	Ш	1	2	2	3	0	2	3
niormation	F	1	2	2	2	2	0	∞
	G	2	3	2	1	3	∞	0

Routing Table at Node

ב ט	Destination	Cost	Next Hop
al Node A	В	1	В
םן	С	1	С
able	D	2	С
	E	1	E
Podulig	F	1	F
ב כ	G	8	-

Time: 5

A sets its distance to G to ∞ D sets its distance to F to ∞ Both pass on news of the link failure

		Α	В	С	D	Е	F	G
Information Stored at Node	Α	0	1	1	2	1	1	8
at No	В	1	0	1	2	2	2	3
ed s	С	1	1	0	1	2	2	2
Stor	D	2	2	1	0	3	8	1
ion	Е	1	2	2	3	0	2	3
mat	F	1	2	2	2	2	0	8
Info	G	2	3	2	1	3	8	0

e P	Destination	Cost	Next Hop	
Routing Table at Node A	В	1	В	
	С	1	С	
	D	2	С	
	E	1	Ш	
	F	1	F	
	G	3	С	

Time: 6

C knows it can reach F and G in 2 hops via alternate paths, so advertises shorter routes; network begins to converge

		Α	В	С	D	Е	F	G
Information Stored at Node	Α	0	1	1	2	1	1	3
	В	1	0	1	2	2	2	3
	С	1	1	0	1	2	2	2
	D	2	2	1	0	3	3	1
	Е	1	2	2	3	0	2	∞
	F	1	2	2	2	2	0	∞
	G	2	3	2	1	3	8	0

Routing Table at Node

ב ט	Destination	Cost	Next Hop	
al Node A	В	1	В	
Roullig Table at I	С	1	С	
	D	2	С	
	E	1	E	
	F	1	F	
ם כ	G	3	С	

Time: 7

Eventually, the network is stable in a new topology

		Α	В	С	D	Е	F	G
Information Stored at Node	Α	0	1	1	2	1	1	3
	В	1	0	1	2	2	2	3
	С	1	1	0	1	2	2	2
	D	2	2	1	0	3	3	1
	Е	1	2	2	3	0	2	4
	F	1	2	2	2	2	0	4
	G	2	3	2	1	3	4	0

Count to Infinity Problem

What if A-E link fails?

A advertises distance ∞ to E at the same time as C advertises a distance 2 to E (the old route via A).

B receives both, concludes that E can be reached in 3 hops via C, and advertises this to A. C sets its distance to E to ∞ and advertises this.

A receives the advertisement from B, decides it can reach E in 4 hops via B, and advertises this to C.

C receives the advertisement from A, decides it can reach E in 5 hops via A...

Loops, eventually counting up to infinity...

Solution 1: How big is infinity?

- Simple solution: #define ∞ 16
- Bounds time it takes to count to infinity, and hence duration of the disruption
- Provided the network is never more than 16 hops across!

Solution 2: Split Horizon

- When sending a routing update, do not send route learned from a neighbour back to that neighbour
 - Prevents loops involved two nodes, doesn't prevent three node loops (like the previous example)
 - No general solution exists distance vector routing always suffers slow convergence due to the count to infinity problem

Distance vector routing

 Count-to-infinity problem not solvable in general – implies distance vector algorithm only suitable for small networks

Next lecture: link-state routing