
Assessed	Coursework	
Course	Name	 Networked	Systems	(H)	

Coursework	Number	 Summative	exercise	1	
Deadline	 Time:	 4:30pm	 Date:	 13	February	2017	

%	Contribution	to	final	
course	mark	

10%	

Solo	or	Group		ü			Solo	 ü	 Group	 	
Anticipated	Hours	 10	

	
Submission	Instructions	

	
Submit	via	Moodle,	following	instructions	in	the	lab	
2	handout.	
	

Please	Note:	This	Coursework	cannot	be	Re-Assessed	
	

Code	of	Assessment	Rules	for	Coursework	Submission	

Deadlines	for	the	submission	of	coursework	which	is	to	be	formally	assessed	will	be	published	in	course	
documentation,	and	work	which	is	submitted	later	than	the	deadline	will	be	subject	to	penalty	as	set	out	below.		

The	primary	grade	and	secondary	band	awarded	for	coursework	which	is	submitted	after	the	published	deadline	will	
be	calculated	as	follows:	

(i) in	respect	of	work	submitted	not	more	than	five	working	days	after	the	deadline	
a. the	work	will	be	assessed	in	the	usual	way;	
b. the	primary	grade	and	secondary	band	so	determined	will	then	be	reduced	by	two	secondary	bands	

for	each	working	day	(or	part	of	a	working	day)	the	work	was	submitted	late.	
(ii) work	submitted	more	than	five	working	days	after	the	deadline	will	be	awarded	Grade	H.	

Penalties	for	late	submission	of	coursework	will	not	be	imposed	if	good	cause	is	established	for	the	late	submission.	
You	should	submit	documents	supporting	good	cause	via	MyCampus.		

Penalty	for	non-adherence	to	Submission	Instructions	is	2	bands	
	

You	must	complete	an	“Own	Work”	form	via	https://studentltc.dcs.gla.ac.uk/	
for	all	coursework	



Networked Systems (H) laboratory exercise 2:
Further Network Programming in C

Dr Colin Perkins
School of Computing Science

University of Glasgow
https://csperkins.org/teaching/2016-2017/networked-systems/

18 January 2017

Introduction
The laboratory exercise last week introduced you to network programming using the Berkeley Sockets
API, by implementing a simple networked “Hello, world” application. In this exercise, you will extend
and debug a simple web server application that was previously implemented in C using Berkeley Sockets.
This is a summative exercise, that is worth 10% of the marks for the course.

Background
In this lab you will debug and extend a simple web server. A web server is a program that listens for,
accepts, and responds to requests made by web clients (i.e., browsers) using the hypertext transport
protocol (HTTP) to deliver web pages. To complete this exercise you must understand the basic operation
of the HTTP protocol, and the way it’s implemented in the sample web server.

The Hypertext Transport Protocol
A web browser uses the Hypertext Transport Protocol (HTTP) to retrieve pages from a web server. The
browser makes a TCP/IP connection to the web server, sends an HTTP request for the desired web page
over that connection, reads the response back, and then displays the page. HTTP requests and responses
are text-based, making the network protocol human-readable, and straight-forward to understand.

In version 1.1 of HTTP, a request comprises a single line command (the “method”), followed by one
or more header lines containing additional information. To retrieve a page, a web browser uses the GET
method, specifying the page to retrieve and the version of the HTTP protocol used (this exercise uses
the HTTP/1.1 protocol). For example, a browser would send the method GET /index.html HTTP/1.1
to retrieve the page /index.html from a server. Following the GET method line will be a sequence of
header lines, giving more information about the request and the capabilities of the browser. One of these
header lines will be a Host: header, giving the name of the site, for example Host: www.gla.ac.uk,
used to allow a single servers to host more than one site. After the headers is a blank line, indicating end
of request.

For example, to fetch the main University web page (http://www.gla.ac.uk/index.html), a
browser would make a TCP/IP connection to www.gla.ac.uk port 80, and send the following request:

GET /index.html HTTP/1.1
Host: www.gla.ac.uk

1



Note that each line ends with a carriage return (‘\r’) followed by a new line (‘\n’), and the whole request
ends with a blank line (i.e., a line containing nothing but the \r\n end of line marker). The example above
is a minimal HTTP request. A web browser will usually include other headers, in addition to the Host:
header, to control the connection, indicate support for particular file formats and languages, to convey
cookies, and so on.

When it receives an HTTP GET request for a web page that exists, a web server will reply with a
HTTP/1.1 200 OK response, followed by more header lines providing information about the response,
a blank line, and then the contents of the page to the displayed. The headers lines should include a
Content-Length: header, which specifies the size of the page in bytes, and a Content-Type: header
that describes the format of the page. The server can also include other header lines, to specify additional
information about the response. As with the request, each header line ends with a carriage return followed
by a new line. Finally, a blank line separates the headers from the page content. An example of a response
follows (“...” indicates omitted text):

HTTP/1.1 200 OK
Date: Tue, 12 Jan 2010 11:18:30 GMT
Server: Apache/1.3.34 (Unix) PHP/4.4.2
Last-Modified: Tue, 12 Jan 2010 09:59:31 GMT
ETag: "1a-3d4e-4b4c4803"
Accept-Ranges: bytes
Content-Length: 15694
Content-Type: text/html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>University of Glasgow :: Glasgow, Scotland, UK</title>

</head>
<body>
...

</body>
</html>

In this example, the “Content-Length:” is 15694 bytes and the “Content-Type:” is text/html, meaning
that there are exactly 15694 bytes of HTML text in the body of the response (starting with the “<” of
the “<!DOCTYPE” line, after the blank line indicating end-of-header, and finishing with the “>” of the
“</html>” line).

The “Content-Type:” header will take different values depending on the type of file returned.
Commonly used values are:

Filename: Content-Type:
∗.html, ∗.htm Content-Type: text/html
∗.css Content-Type: text/css
∗.txt Content-Type: text/plain
∗.jpg, ∗.jpeg Content-Type: image/jpeg
∗.gif Content-Type: image/gif
∗.png Content-Type: image/png
(unknown) Content-Type: application/octet-stream

The IANA maintains the master list of standard content type values. It is available from their website at
http://www.iana.org/assignments/media-types.

If the browser requests a non-existing file, the server will respond with a HTTP/1.1 404 Not Found
response. In this case, the body of the response is the error page to display, and the headers give
information about the error. An example might be:

2



HTTP/1.1 404 Not Found
Date: Tue, 20 Jan 2009 10:31:56 GMT
Server: Apache/2.0.46 (Scientific Linux)
Content-Length: 300
Connection: close
Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html>
<head>
<title>404 Not Found</title>
...
</body>
</html>

Other types of response are possible, distinguished by the numeric code in the first line of the response.
A browser will open one or more connections to a server for each web page. On each connection, the

browser will send a request, then wait for and process the response from the server. It may then send
another request on the same connection, perhaps after waiting some time, or close the connection. If
the server wants the browser to close the connection immediately, it can include a Connection: close
header in its response to the request.

A Sample Web Server
The zip archive associated with this lab exercise contains the source code for a simple web server, as an
example of a networked application using TCP/IP. The server is written in C, using the Berkeley Sockets
API, and runs on the Linux machines in the lab. The zip archive also contains a Makefile, and a small
sample website.

The web server implementation uses a single thread to accept() connections from new clients. It
transfers each new connection to a worker thread from a thread pool for processing, by passing the file
descriptor to the thread. Once a worker thread gets the file descriptor, it enters a loop where it reads the
request, sends the response, and repeats until the browser closes the connection. The thread then blocks
until it’s passed a new connection. The web server is a minimal implementation, that contains only the
bare minimum features needed to serve a simple website.

Download the file lab02.zip from the course website. Extract the zip archive, to create a directory
called lab02. Open a shell in that directory, and run make to build the web server. Then, run ./wserver
to start the server. The server listens for connections on port 8080 of the host on which it’s running.
For example, if you run the server on host bo720-1-01u.dcs.gla.ac.uk, it will be reachable by the
URL http://bo720-1-01u.dcs.gla.ac.uk:8080/. Browse the sample website using the server
you have just built, by running a browser and opening the appropriate URL. Review the provided code,
and familiarise yourself with its operation. You will notice that the web server provided is buggy and
incomplete, and will not correctly serve image files. If you don’t understand the HTTP protocol, or its
implementation in the server, then ask one of the demonstrators.

Summative Exercise 1: Web Server
In Summative Exercise 1 you will debug and extend the web server provided in the lab02.zip file. There
are three parts to the exercise, as follows:

1. Debug the web server, by modifying the file wserver.c so it correctly sends JPEG format images
back to the browser. The sample website provided with the server contains some JPEG format
images. You have successfully solved this part of the exercise when you can browse this sample

3



site, served by the web server, and have your browser display all the images, and indicate that it has
finished downloading the page.

2. Modify the server code, in wserver.c, so that if a browser requests a URL representing a directory,
and the file index.html exists in that directory, the server returns a redirect asking the browser to
fetch the index.html file instead. This is done by sending a 307 Temporary Redirect HTTP
response. For example, if the browser requests http://example.com/foo/, the server would
redirect it to http://example.com/foo/index.html by sending a response like:

HTTP/1.1 307 Temporary Redirect
Location: /foo/index.html
Content-Length: 143
Content-Type: text/html

<html>
<head>
<title>Redirected</title>

</head>
<body>
<p>Redirecting ...</p>

</body>
</html>

The Location: header gives the location to which the browser is being redirected. The HTML
body is for backwards compatibility, and is displayed by old browsers that don’t understand the
redirect response. Ensure the redirect works whether or not the URL representing the directory
ended in a / character.

3. Modify the server code, in wserver.c, so that if a browser requests a URL representing a directory,
and the file index.html does not exist in that directory, it returns instead a dynamically generated
HTML page (a 200 OK response) that contains a listing of the contents of the corresponding
directory. Each entry in the listing should be a link to the corresponding file or directory. Be careful
to avoid race conditions when generating the directory listing.
Hint: use the opendir(), readdir(), and closedir() functions from the Linux standard library
to read a directory listing.

To complete this exercise you will need to modify the wserver.c file included in the zip archive. Do
not modify any of the other files in the archive, and make only the minimum number of changes required.
Ensure any modifications you make to the wserver.c file match the code style of the surrounding code.

Your modified wserver.c file must compile cleanly, without any warnings or errors, using the
provided Makefile, and run on the Linux machines in the labs.

Submission Instructions
Once you have completed the assignment, make a copy of the wserver.c file – containing your
modifications – under a new name, with a dash and your 7-digit numeric matriculation number before
the extension (note: 7-digits only, do not include the first letter of your surname). You can do this using
the command cp wserver.c wserver-matric.c (replacing matric with your matriculation number).
Submit the resulting wserver-matric.c file via Moodle. Do not submit any other files.

This is an assessed exercise, worth 10% of the marks for this course. The deadline for submissions is
4:30pm on Monday 13 February 2017. The Code of Assessment allows late submission up to 5 working
days beyond this deadline, subject to a penalty of 2 bands for each working day, or part thereof, the

4



submission is late. Submissions received more than 5 working days after the due date will receive an H
(band value of 0). These penalties will be strictly enforced.

Submissions that are not made via Moodle, that have the wrong filename, or that otherwise do not
follow the submission instructions will be subject to a 2 band penalty. This penalty will be strictly enforced
and will be applied in addition to any late submission penalty.

Marking Scheme
Marks will be awarded for:

• Modifying the wserver.c file so it correctly send JPEG format images back to the browser:

– [1 mark] for code that works; and
– [1 mark] for correctly identifying and fixing the underlying problem rather than working
around the bug.

• Modifying the wserver.c file so it correctly redirects browsers that request a URL representing a
directory to the index.html file in that directory, if it exists:

– [1 mark] for a response with the correct syntax;
– [1 mark] for including the correct URL in the Location: header;
– [1 mark] for including a correct Content-Length: header;
– [1 mark] for including an appropriate body containing valid HTML;
– [2 marks] for correct code to generate and send the response;
– [2 marks] for making appropriate use of existing functions in the wserver.c file; and
– [2 marks] for matching the style of the existing code.

• Modifying the wserver.c file so it correctly displays a directory listing if the browser requests a
URL representing a directory and the corresponding index.html file does not exist:

– [4 marks] for correct use of opendir(), readdir(), and closedir();
– [4 marks] for correctly building up a response while reading the directory listing, with dynamic
allocation of memory as needed;

– [2 marks] for correctly formatting the HTTP headers, including a correct Content-Length:
header;

– [2 marks] for generating valid HTML in the response;
– [2 marks] for correct code to generate and send the response;
– [2 marks] for making appropriate use of existing functions in the wserver.c file; and
– [2 marks] for matching the style of the existing code.

Marks will be deducted for the following general issues occurring in code you write or modify:

• up to [2 marks] for compiler errors or warnings;

• up to [4 marks] for excessive abstraction, over-engineering, or poor design;

• up to [2 marks] for use of global variables;

• up to [2 marks] for abuse of the type system;

5



• up to [2 marks] for reinventing standard library functions;

• up to [2 marks] for use of unallocated memory/using memory after free()/memory leaks;

• up to [2 marks] for buffer overflows, race conditions, or other security problems;

• up to [2 marks] for missing error handling; and

• up to [2 marks] for code duplication and repetition.

The result will be a numeric mark out of 30. This numeric mark will be converted to a percentage, then
the percentage will be converted to a band on the 22-point University of Glasgow scale using the standard
translation table for the School of Computing Science. Any applicable penalty for late submission and/or
for not following submission instructions will then be applied, and a band will be returned. A brief written
justification for the band will also be supplied.

6


