
Colin Perkins | https://csperkins.org/ | Copyright © 2017 | This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License. To 
view a copy of this license, visit http://creativecommons.org/licenses/by-nd/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Virtualisation

Advanced Operating Systems 
Tutorial 9

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/


Colin Perkins | https://csperkins.org/ | Copyright © 2017

Virtualisation and Hypervisors

• Full system virtualisation 
• Concepts 

• Hypervisor mode; CPU support 

• Paravirtualisation 

• Type 1 and Type 2 hypervisors 

• Systems management and live migration 

• Example: Xen

2

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/


Colin Perkins | https://csperkins.org/ | Copyright © 2017

Discussion: Xen

• P. Barham et al, “Xen and the art of virtualization”, Proc. 
ACM Symposium on Operating Systems Principles, 
October 2003. DOI:10.1145/945445.945462 
• Trade-offs of paravirtualisation vs. full virtualisation? 

• What needs to be done to port an OS to Xen? 

• Is paravirtualisation worthwhile, when compared to full system 
virtualisation? 

• How do Dom0 and device drivers work?

3

Xen and the Art of Virtualization

Paul Barham∗, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,
Alex Ho, Rolf Neugebauer†, Ian Pratt, Andrew Warfield

University of Cambridge Computer Laboratory
15 JJ Thomson Avenue, Cambridge, UK, CB3 0FD

{firstname.lastname}@cl.cam.ac.uk

ABSTRACT
Numerous systems have been designed which use virtualization to
subdivide the ample resources of a modern computer. Some require
specialized hardware, or cannot support commodity operating sys-
tems. Some target 100% binary compatibility at the expense of
performance. Others sacrifice security or functionality for speed.
Few offer resource isolation or performance guarantees; most pro-
vide only best-effort provisioning, risking denial of service.

This paper presents Xen, an x86 virtual machine monitor which
allows multiple commodity operating systems to share conventional
hardware in a safe and resource managed fashion, but without sac-
rificing either performance or functionality. This is achieved by
providing an idealized virtual machine abstraction to which oper-
ating systems such as Linux, BSD and Windows XP, can be ported
with minimal effort.

Our design is targeted at hosting up to 100 virtual machine in-
stances simultaneously on a modern server. The virtualization ap-
proach taken by Xen is extremely efficient: we allow operating sys-
tems such as Linux and Windows XP to be hosted simultaneously
for a negligible performance overhead — at most a few percent
compared with the unvirtualized case. We considerably outperform
competing commercial and freely available solutions in a range of
microbenchmarks and system-wide tests.

Categories and Subject Descriptors
D.4.1 [Operating Systems]: Process Management; D.4.2 [Opera-
ting Systems]: Storage Management; D.4.8 [Operating Systems]:
Performance

General Terms
Design, Measurement, Performance

Keywords
Virtual Machine Monitors, Hypervisors, Paravirtualization
∗Microsoft Research Cambridge, UK
†Intel Research Cambridge, UK

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOSP’03, October 19–22, 2003, Bolton Landing, New York, USA.
Copyright 2003 ACM 1-58113-757-5/03/0010 ...$5.00.

1. INTRODUCTION
Modern computers are sufficiently powerful to use virtualization

to present the illusion of many smaller virtual machines (VMs),
each running a separate operating system instance. This has led to
a resurgence of interest in VM technology. In this paper we present
Xen, a high performance resource-managed virtual machine mon-
itor (VMM) which enables applications such as server consolida-
tion [42, 8], co-located hosting facilities [14], distributed web ser-
vices [43], secure computing platforms [12, 16] and application
mobility [26, 37].

Successful partitioning of a machine to support the concurrent
execution of multiple operating systems poses several challenges.
Firstly, virtual machines must be isolated from one another: it is not
acceptable for the execution of one to adversely affect the perfor-
mance of another. This is particularly true when virtual machines
are owned by mutually untrusting users. Secondly, it is necessary
to support a variety of different operating systems to accommodate
the heterogeneity of popular applications. Thirdly, the performance
overhead introduced by virtualization should be small.

Xen hosts commodity operating systems, albeit with some source
modifications. The prototype described and evaluated in this paper
can support multiple concurrent instances of our XenoLinux guest
operating system; each instance exports an application binary inter-
face identical to a non-virtualized Linux 2.4. Our port of Windows
XP to Xen is not yet complete but is capable of running simple
user-space processes. Work is also progressing in porting NetBSD.

Xen enables users to dynamically instantiate an operating sys-
tem to execute whatever they desire. In the XenoServer project [15,
35] we are deploying Xen on standard server hardware at econom-
ically strategic locations within ISPs or at Internet exchanges. We
perform admission control when starting new virtual machines and
expect each VM to pay in some fashion for the resources it requires.
We discuss our ideas and approach in this direction elsewhere [21];
this paper focuses on the VMM.

There are a number of ways to build a system to host multiple
applications and servers on a shared machine. Perhaps the simplest
is to deploy one or more hosts running a standard operating sys-
tem such as Linux or Windows, and then to allow users to install
files and start processes — protection between applications being
provided by conventional OS techniques. Experience shows that
system administration can quickly become a time-consuming task
due to complex configuration interactions between supposedly dis-
joint applications.

More importantly, such systems do not adequately support per-
formance isolation; the scheduling priority, memory demand, net-
work traffic and disk accesses of one process impact the perfor-
mance of others. This may be acceptable when there is adequate
provisioning and a closed user group (such as in the case of com-

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://dx.doi.org/10.1145/945445.945462


Colin Perkins | https://csperkins.org/ | Copyright © 2017

Jails and Unikernels

• Alternatives to full virtualisation 
• Jails, containers, and sandboxes 

• Benefits: lightweight, straightforward administration, portable 

• Disadvantages: imperfect virtualisation and security; tied to a physical 
machine 

• Container management 
• Docker: standardised way of packaging an image to run in a container 

• Unikernels: library operating systems; high-level languages; customised to 
the application

4

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/


Colin Perkins | https://csperkins.org/ | Copyright © 2017

Discussion: Jails and Unikernels

• P.-H. Kamp and R. Watson, “Jails: Confining the omnipotent 
root”, Proc. System Administration and Network Engineering 
Conference, May 2000. http://www.sane.nl/events/sane2000/papers/kamp.pdf 
• Trade-offs vs. complete system virtualisation? 

• Overheads vs. flexibility vs. ease of management? 

• Benefits of Docker-style configuration of images 

• A. Madhavapeddy et al., “Unikernels: Library Operating 
Systems for the Cloud”, Proc. ACM ASPLOS, Houston, TX, 
USA, March 2013. DOI:10.1145/2451116.2451167 
• Is optimising an operating system for a single application going too 

far? 

• Are unikernels maintainable? 

• Relation to containers and hypervisors?

5

Jails: Confining the omnipotent root.

Poul-Henning Kamp <phk@FreeBSD.org>

Robert N. M. Watson <rwatson@FreeBSD.org>

The FreeBSD Project

ABSTRACT

The traditional UNIX security model is simple but inexpressive.
Adding fine-grained access control improves the expressiveness, but
often dramatically increases both the cost of system management and
implementation complexity. In environments with a more complex man-
agement model, with delegation of some management functions to par-
ties under varying degrees of trust, the base UNIX model and most natu-
ral extensions are inappropriate at best. Where multiple mutually un-
trusting parties are introduced, ‘‘inappropriate’’ rapidly transitions to
‘‘nightmarish’’, especially with regards to data integrity and privacy pro-
tection.

The FreeBSD ‘‘Jail’’ facility provides the ability to partition the operat-
ing system environment, while maintaining the simplicity of the UNIX
‘‘root’’ model. In Jail, users with privilege find that the scope of their
requests is limited to the jail, allowing system administrators to delegate
management capabilities for each virtual machine environment. Creating
virtual machines in this manner has many potential uses; the most popu-
lar thus far has been for providing virtual machine services in Internet
Service Provider environments.

1. Introduction
The UNIX access control mechanism is designed for an environment with two types

of users: those with, and without administrative privilege. Within this framework, every
attempt is made to provide an open system, allowing easy sharing of files and inter-pro-
cess communication. As a member of the UNIX family, FreeBSD inherits these secu-
rity properties. Users of FreeBSD in non-traditional UNIX environments must balance
their need for strong application support, high network performance and functionality,

This work was sponsored by http://www.servetheweb.com/ and donated to
the FreeBSD Project for inclusion in the FreeBSD OS. FreeBSD 4.0-RELEASE was
the first release including this code. Follow-on work was sponsored by Safeport Net-
work Services, http://www.safeport.com/

Unikernels: Library Operating Systems for the Cloud

Anil Madhavapeddy, Richard Mortier1, Charalampos Rotsos, David Scott2, Balraj Singh,
Thomas Gazagnaire3, Steven Smith, Steven Hand and Jon Crowcroft

University of Cambridge, University of Nottingham1, Citrix Systems Ltd2, OCamlPro SAS3

first.last@cl.cam.ac.uk, first.last@nottingham.ac.uk, dave.scott@citrix.com, first@ocamlpro.com

Abstract

We present unikernels, a new approach to deploying cloud services
via applications written in high-level source code. Unikernels are
single-purpose appliances that are compile-time specialised into
standalone kernels, and sealed against modification when deployed
to a cloud platform. In return they offer significant reduction in
image sizes, improved efficiency and security, and should reduce
operational costs. Our Mirage prototype compiles OCaml code into
unikernels that run on commodity clouds and offer an order of
magnitude reduction in code size without significant performance
penalty. The architecture combines static type-safety with a single
address-space layout that can be made immutable via a hypervisor
extension. Mirage contributes a suite of type-safe protocol libraries,
and our results demonstrate that the hypervisor is a platform that
overcomes the hardware compatibility issues that have made past
library operating systems impractical to deploy in the real-world.

Categories and Subject Descriptors D.4 [Operating Systems]:
Organization and Design; D.1 [Programming Techniques]: Ap-
plicative (Functional) Programming

General Terms Experimentation, Performance

1. Introduction

Operating system virtualization has revolutionised the economics
of large-scale computing by providing a platform on which cus-
tomers rent resources to host virtual machines (VMs). Each VM
presents as a self-contained computer, booting a standard OS kernel
and running unmodified application processes. Each VM is usually
specialised to a particular role, e.g., a database, a webserver, and
scaling out involves cloning VMs from a template image.

Despite this shift from applications running on multi-user op-
erating systems to provisioning many instances of single-purpose
VMs, there is little actual specialisation that occurs in the image
that is deployed to the cloud. We take an extreme position on spe-
cialisation, treating the final VM image as a single-purpose appli-
ance rather than a general-purpose system by stripping away func-
tionality at compile-time. Specifically, our contributions are: (i) the
unikernel approach to providing sealed single-purpose appliances,
particularly suitable for providing cloud services; (ii) evaluation of
a complete implementation of these techniques using a functional
programming language (OCaml), showing that the benefits of type-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ASPLOS’13, March 16–20, 2013, Houston, Texas, USA.
Copyright c⃝ 2013 ACM 978-1-4503-1870-9/13/03. . . $15.00

Mirage Compiler

Hardware

Hypervisor

OS Kernel

User Processes

Language Runtime

Parallel Threads

Application Binary

Mirage Runtime

Hardware

Hypervisor

Application Code

Configuration Files
application source code
configuration files
hardware architecture
whole-system optimisation

specialised
unikernel}

Figure 1: Contrasting software layers in existing VM appliances vs.
unikernel’s standalone kernel compilation approach.

safety need not damage performance; and (iii) libraries and lan-
guage extensions supporting systems programming in OCaml.

The unikernel approach builds on past work in library OSs [1–
3]. The entire software stack of system libraries, language runtime,
and applications is compiled into a single bootable VM image that
runs directly on a standard hypervisor (Figure 1). By targeting a
standard hypervisor, unikernels avoid the hardware compatibility
problems encountered by traditional library OSs such as Exoker-
nel [1] and Nemesis [2]. By eschewing backward compatibility, in
contrast to Drawbridge [3], unikernels address cloud services rather
than desktop applications. By targeting the commodity cloud with
a library OS, unikernels can provide greater performance and im-
proved security compared to Singularity [4]. Finally, in contrast to
Libra [5] which provides a libOS abstraction for the JVM over Xen
but relies on a separate Linux VM instance to provide networking
and storage, unikernels are more highly-specialised single-purpose
appliance VMs that directly integrate communication protocols.

We describe a complete unikernel prototype in the form of
our OCaml-based Mirage implementation (§3). We evaluate it via
micro-benchmarks and appliances providing DNS, OpenFlow, and
HTTP (§4). We find sacrificing source-level backward compatibil-
ity allows us to increase performance while significantly improving
the security of external-facing cloud services. We retain compati-
bility with external systems via standard network protocols such as
TCP/IP, rather than attempting to support POSIX or other conven-
tional standards for application construction. For example, the Mi-
rage DNS server outperforms both BIND 9 (by 45%) and the high-
performance NSD server (§4.2), while using very much smaller
VM images: our unikernel appliance image was just 200 kB while
the BIND appliance was over 400 MB. We conclude by discussing
our experiences building Mirage and its position within the state of
the art (§5), and concluding (§6).

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://www.apple.com

