YEARS OF

University

& of Glasgow 60
School of
Computing Science

COMPUTING
AT GLASGOW

Virtualisation

Advanced Operating Systems
Tutorial 9

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/

Virtualisation and Hypervisors

e Full system virtualisation

e Concepts

e Hypervisor mode; CPU support

e Paravirtualisation

e Type 1 and Type 2 hypervisors

e Systems management and live migration

 Example: Xen

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Discussion: Xen

e P. Barham et al, “Xen and the art of virtualization”, Proc.
ACM Symposium on Operating Systems Principles,
October 2003. DOI:10.1145/945445.945462

e Trade-offs of paravirtualisation vs. full virtualisation?
 What needs to be done to port an OS to Xen?

e |s paravirtualisation worthwhile, when compared to full system
virtualisation?

e How do DomO and device drivers work?

Xen and the Art of Virtualization

Paul Barham', Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,
Alex Ho, Rolf Neugebauer', lan Pratt, Andrew Warfield
University of Cambridge Computer Laboratory
15 JJ Thomson Avenue, Cambridge, UK, CB3 OFD
(firstname.lastname)}@cl.cam.ac.uk

ABSTRACT

Numerous systems have been designed which use virtualization to
ple resources of a modern computer. Some require

% binary compatibilty af the expense of
performance. Others sacrifice security or functionality for speed.
Few offer resource isolation or performance guaraniees; most pro-
vide only best-effort provisioning, risking denial of service.

This paper presents Xen, an x86 virtual machine monitor which

hardware in a safe and resource d fashion, but without sac-
sificing either performance or functionality. This is achieved by
providing an idealized virtual machine abstraction 1o which oper-
ating sysiems such as Linux, BSD and Windows XP, can be pored
with minimal effort

Our design is targeted at hosting up to 100 virtual machine in.
stances simultancously on a modern server. The virtualization ap

ch tak

1. INTRODUCTION

Modern computers are sufficiently powerful to use virtualization
10 present the illusion of many smaller virtual machines (VMSs).
e operating system instance. This has led o
tin VM technology. In this paper we prsent
h performance resource-managed virtual machine mon

cach running a s
Xen.
itor (VMM) which enables applications such s server consolida-
tion [42. 8, co-located hosting facilitis [14], distributed web ser
vices (431, secure computing platforms [12. 16] and application
mobilty 26, 37]

Successful partition
exceution of multiple op
Firstly,vitual machines must be isolated from one another: it i not
aceeptable for the exccution of one (0 adversely affect he perfor-
mance of another. This is particularly true when virtual machines
are owned by mutually untrusting users
10 support & variety of different operating systems (0 accommodate

e of inte

' a machine to support the concurrent
ting systems poses several challenges.

ondly, it is necessary

I taken by Xen is perating sys:
tems such as Linux and Windows XP to be hosted simultancously
for 4 negligible performance overhead — at most a few percent

gencity of popular spplications. Thirdly
overhead introduced by vitusizaton should be small
Xen Joei

pa P
competing commercial and freely available solutions in a range of

‘microbenchmarks and system-wide tests.

Categories and Subject Descriptors
DA.1 (Operating Systems}: Process Managemen: D.
ting Systems]: Storage Managements 4.5 [Operatin

General Terms
Design, Measurement, Performance

Keywords

Virtual Machine Monitors, Hypervisors, Pasvirualization

“Microsoft Re
"Intel Reses

Permission to make digital or hard copies of al or part of this work for
personal or classroom use is granted without

Tepublsh 10 post o erers of o it o, e o pecife

SOSP'03, October 1932, 2003, Bolton Landing, New York, USA.
Copyright 2003 ACM 1-S8113-757-5/03/0010 ..$5.00.

S —

modifications. The prototyp and evaluated in this paper
an support multiple concurrent instances of our XenoLinux guest
system; each in orts an application binary inter-

entical to a non-virtualized Linux 2.4, Our port of Windows.
1 is ot yet complete but is capable of running simple
-space processes. Work s also progressing in porting NetBSD.,
bles users to dynamically instantiate an operating sys-
he XenoServer project [15.

We discuss our ideas and approach in this direction elsewhere [21];
this paper focuses on the VMM,
There are & number of ways to build a system to host muliple

provided by conventional OS techniques. Experien
System administration can quickly become a time-consuming task
configuration

P
joint applications.

More importantly, such systems do not adequately support per
formance isolation; the scheduling priority, memory demand, net-
work traffic and disk accesses of one process impact the perfor
mance of others. This may be accepable when there is adequate
provisioning and a closed user group (such as in the case of com-

T—

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://dx.doi.org/10.1145/945445.945462

Jails and Unikernels

e Alternatives to full virtualisation

e Jails, containers, and sandboxes
o Benefits: lightweight, straightforward administration, portable

e Disadvantages: imperfect virtualisation and security; tied to a physical
machine

e Container management

* Docker: standardised way of packaging an image to run in a container

e Unikernels: library operating systems; high-level languages; customised to
the application

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Discussion: Jails and Unikernels

e P.-H. Kamp and R. Watson, “Jails: Confining the omnipotent
root”, Proc. System Administration and Network Engineering
Conference, May 2000. http://mww.sane.nl/events/sane2000/papers/kamp.pdf

Trade-offs vs. complete system virtualisation?
Overheads vs. flexibility vs. ease of management?
Benefits of Docker-style configuration of images

 A. Madhavapeddy et al., “Unikernels: Library Operating
Systems for the Cloud”, Proc. ACM ASPLQOS, Houston, TX,
USA, March 2013. DOI:10.1145/2451116.2451167

Is optimising an operating system for a single application going too
far?

Are unikernels maintainable?

Relation to containers and hypervisors?

Jails: Confining the omnipotent root.

Poul-Henning Kamp <phk@FreeBSD.org>

Robert N. M. Watson <rwatson@ FreeBSD.org>
The FreeBSD Project

ABSTRACT

The traditional UNIX security model is simple but inexpressive.
Adding fine-grained access control improves the expressiveness, but
often dramatically increases both the cost of system management and

ion complexity. In en

with a more complex man-

agement model, with delegation of some management functions to par-
ties under varying degrees of trust, the base UNIX model and most natu-
ral extensions are inappropriate at best. Where multiple mutually un-
trusting parties are introduced, “inappropriate” rapidly transitions to

““nightmarish
tection.

", especially with regards to data integrity and privacy pro-

The FreeBSD *Jail” facility provides the ability to partition the operat-

ing system envi while

the simplicity of the UNIX

“root” model. In Jail, users with privi

ege find that the scope of their

requests is limited to the jail, allowing system administrators to delegate
management capabilities for each virtual machine environment. Creating
virtual machines in this manner has many potential uses; the most popu-
lar thus far has been for providing virtual machine services in Internet

Service Provider environments.

1. Introduction
The UNIX

ess control mechanism is designed for an environment with two types

of users: those with, and without administrative privilege. Within this framework, every
attempt is made to provide an open system, allowing easy sharing of files and inter-pro-

cess communica

on. As a member of the UNIX family, FreeBSD inherits these secu-

rity properties. Users of FreeBSD in non-traditional UNIX environments must balance
their need for strong application support, high network performance and functionality,

This work was sponsored by http://www.servetheweb.com/ and donated to

the FreeBSD Project for inclusion in the FreeBSD OS. FreeBSD 4.0-REL

EASE was

the first release including this code. Follow-on work was sponsored by Safeport Net-

work Services, http: //www. safeport .com/

S—

T—

Unikernels: Library Operating Systems for the Cloud

Anil Madhavapeddy, Richard Mortier', Charalampos Rotsos, David Scott?, Balraj Singh,

homas Ga

University of Cambridge, University of Nottinghs

frstJast@cl uk, f

aire”, Steven Smith, Steven Hand and Jon Croweroft

iam', Citrix Systems Lid?, OCamIPro SAS
K

Abstract

Configuration Files Mirage Compiler

We present unik approach e
el source code. Unikernels are
are compile-time specs

st modification when deployed

via applications writien n hi
s sed into.

rity, and should reduce
mpiles OCaml code into
nodity clouds and offer an order of
‘magnitude reduction in code size without significant performance
penalty. The architecture combines staic type-safety with a single
be made immutable via a hypervisor

protocol libraries

op
uniken,

overcomes the ha

are compa s that have made past
library operating sy

o deploy in the real-worl.

Categories and Subject Descriptors D4 [Operating Systems)
Organization and Design; D.1 [Programming TechniquesT: Ap-
plicative (Functional) Programming

General Terms Experimentation, Performance

1. Introduction

dified application processes. Each VM
specialised 10 a particular role, e.¢. a database, 4 webserver, and
outinvolves cloning VMs from a template imag

that is deployed to the cloud. We take an extreme position on spe-
cialisation, treating the final VM image as a single-purpose a

purpose system by stripping away fun
our contributions are: (i) the
c-purpose appliance:
ervices; (i) evaluation of
hniques s

10 mke digial o had o
clastoon s s rnicd wihow

cofall o part oftis work o prsonsl o
Providad ta copie. st not e or disrutod

applcation source code
configuraton fles
hardware architecture
whole-system optimisation

‘Application Binary

Language Runcime

Parallel Threads

User Processes | [Applcaion Code } specilised

05 Kernel Mirage Runtime unikernel
Hypervisor Hypervisor.
Hardware Hardware

Figure 1: Contrasting software layers n existing VM appliances vs.
unikernel's standalone kernel compilation approach;

safety need not damage performance; and (i) libraries and lan-
guage extensions supporting systems programming in OCaml.
e unikernel approach builds on past work in library OSs [1

a of system libraries, language
ons is compiled into bootable VM imay
on a standard hypervisor (Figure 1). By

‘and applic
ans di

blems encountered by traditional i I as Exoker.
nel [1] and Nemesis [2]. By eschewing backward compatibility, in

which provides a O absira

We describe a compl 1 prototype in the form of
our OCaml-based Mirage implementation (53). We evaluate it via
micro-benchmarks and appliances providing DN, OpenFlow, and
HTTP (54). We find sacrifcin
ity allows us o i
the security We retain compat
bility with ex ork protocols such a
TCPAIP, rther than attempting to support POSIX or other conven-
tional standards for application construction. For example, the Mi-
Fage DN server outperforms both BIND 9 (by 45%) and the high.
performance NSD server (54.2). while us ‘much smaller
appliance image was just 200 kB while
00 MB. We conclude by discussing

and ts position within the sate of

al systems v

our experiences building M
the art(55), and concludin

T—

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://www.apple.com

