
Colin Perkins | https://csperkins.org/ | Copyright © 2017 | This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-nd/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Networking

Advanced Operating Systems
Tutorial 7

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Message Passing and Networks

• Actors for network programming
• Integrating networking with actors

• Message parsing and serialisation

• Applicability

• Asynchronous I/O
• Event loops

• libev/Rust MIO (Berkeley Socket select()?)

• Higher-level approaches: Futures, Your Server as a Function

2

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Discussion: Your Server as a Function

• M. Eriksen, “Your server as a function”, Proc.
Workshop on Programming Languages and
Operating Systems, Farmington, PA, USA,
November 2013. ACM.

• Discusion:
• Higher-level abstraction for asynchronous I/O

• Futures to abstract asynchronous operations –  
in progress, succeeded, or failed; action runs
concurrently until attempt made to read the result,  
then rendezvous

• Services are functions that return a Future;
encapsulate an operation to be performed by a server

• Filters allow composition of services

• Is this a good way of building network services?

• Does it scale?

• Too much magic? Or appropriate level of abstraction?

3

Your Server as a Function

Marius Eriksen
Twitter Inc.

marius@twitter.com

Abstract

Building server software in a large-scale setting, where systems ex-
hibit a high degree of concurrency and environmental variability, is
a challenging task to even the most experienced programmer. Ef-
ficiency, safety, and robustness are paramount—goals which have
traditionally conflicted with modularity, reusability, and flexibility.

We describe three abstractions which combine to present a pow-
erful programming model for building safe, modular, and efficient
server software: Composable futures are used to relate concurrent,
asynchronous actions; services and filters are specialized functions
used for the modular composition of our complex server software.

Finally, we discuss our experiences using these abstractions and
techniques throughout Twitter’s serving infrastructure.

Categories and Subject Descriptors D.1.1 [Programming tech-
niques]: Applicative (Functional) Programming; D.1.3 [Program-
ming techniques]: Concurrent Programming; D.1.3 [Program-
ming techniques]: Distributed Programming; C.2.4 [Distributed
Systems]: Client/server; C.2.4 [Distributed Systems]: Distributed
applications; D.3.3 [Programming languages]: Language Con-
structs and Features—Concurrent programming structures

1. Introduction

Servers in a large-scale setting are required to process tens of
thousands, if not hundreds of thousands of requests concurrently;
they need to handle partial failures, adapt to changes in network
conditions, and be tolerant of operator errors. As if that weren’t
enough, harnessing off-the-shelf software requires interfacing with
a heterogeneous set of components, each designed for a different
purpose. These goals are often at odds with creating modular and
reusable software [6].

We present three abstractions around which we structure our
server software at Twitter. They adhere to the style of func-
tional programming—emphasizing immutability, the composition
of first-class functions, and the isolation of side effects—and com-
bine to present a large gain in flexibility, simplicity, ease of reason-
ing, and robustness.

Futures The results of asynchronous operations are represented
by futures which compose to express dependencies between
operations.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PLOS ’13, PLOS’13, November 03-06 2013, Farmington, PA, USA.
Copyright c� 2013 ACM 978-1-4503-2460-1/13/11. . . $15.00.
http://dx.doi.org/10.1145/2525528.2525538

Services Systems boundaries are represented by asynchronous
functions called services. They provide a symmetric and uni-
form API: the same abstraction represents both clients and
servers.

Filters Application-agnostic concerns (e.g. timeouts, retries, au-
thentication) are encapsulated by filters which compose to build
services from multiple independent modules.

Server operations (e.g. acting on an incoming RPC or a time-
out) are defined in a declarative fashion, relating the results of the
(possibly many) subsequent sub-operations through the use of fu-
ture combinators. Operations are phrased as value transformations,
encouraging the use of immutable data structures and, we believe,
enhancing correctness through simplicity of reasoning.

Operations describe what is computed; execution is handled
separately. This frees the programmer from attending to the minu-
tiae of setting up threads, ensuring pools and queues are sized cor-
rectly, and making sure that resources are properly reclaimed—
these concerns are instead handled by our runtime library, Fina-
gle [10]. Relinquishing the programmer from these responsibilities,
the runtime is free to adapt to the situation at hand. This is used to
exploit thread locality, implement QoS, multiplex network I/O, and
to thread through tracing metadata (à la Google Dapper [20]).

We have deployed this in very large distributed systems with
great success. Indeed, Finagle and its accompanying structuring
idioms are used throughout the entire Twitter service stack—from
frontend web servers to backend data systems.

All of the code examples presented are written in the Scala [17]
programming language, though the abstractions work equally well,
if not as concisely, in our other principal systems language: Java.

2. Futures

A future is a container used to hold the result of an asynchronous
operation such as a network RPC, a timeout, or a disk I/O opera-
tion. A future is either empty—the result is not yet available; suc-
ceeded—the producer has completed and has populated the future
with the result of the operation; or failed—the producer failed, and
the future contains the resulting exception.

An immediately successful future is constructed with Future.
value; an immediately failed future with Future.exception. An
empty future is represented by a Promise, which is a writable
future allowing for at most one state transition, to either of the
nonempty states. Promises are similar to I-structures [4], except
that they embody failed as well as successful computations; they
are rarely used directly.

Futures compose in two ways. First, a future may be defined as
a function of other futures, giving rise to a dependency graph which
is evaluated in the manner of dataflow programming. Second, inde-
pendent futures are executed concurrently by default—execution is
sequenced only where a dependency exists.

Futures are first class values; they are wholly defined in the host
language.

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

High Performance Networking

• Growth in network performance relative to CPU performance →
implications for network stack

• Alternative APIs:
• netmap – shared ring buffers between application and kernel; dedicated

network interface; high performance, but no abstraction

• StackMap – new API for a TCP/IP stack, combining netmap API for data
plane with Sockets API for control plane

4

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Discussion: netmap and StackMap

• L. Rizzo, “netmap: a novel framework for fast packet I/O”,
Proc. USENIX Annual Technical Conference, Boston, MA,
USA, June 2012.
• Background: NIC operation/data structures; kernel APIs; overheads

• Pre-allocated buffers, shared between kernel and application;
reduced numbers of system calls; dedicated network interfaces – is
this a good API? How general purpose is it?

• Performance – does it improve performance compared to the
regular stack? For what applications?

• Is this a good building block going forward? A general purpose API?

• K. Yasukata, M. Honda, D. Santry, and L. Eggert,
“StackMap: Low-latency networking with the OS stack and
dedicated NICs”, Proc. USENIX Annual Technical
Conference, Denver, CO, USA, June 2016.
• Combines netmap with kernel TCP/IP stack; new API for data path

• Why are retransmissions complex? How are they handled?

• Does this offer sufficient performance benefit to be worthwhile?

5

netmap: a novel framework for fast packet I/O

Luigi Rizzo, Università di Pisa, Italy∗

Proceedings of the 2012 USENIX Annual Technical Conference, June 2012.

https://www.usenix.org/conference/atc12/ †

Abstract

Many applications (routers, traffic monitors, firewalls,
etc.) need to send and receive packets at line rate even on
very fast links. In this paper we present netmap, a novel
framework that enables commodity operating systems
to handle the millions of packets per seconds traversing
1..10 Gbit/s links, without requiring custom hardware or
changes to applications.

In building netmap, we identified and successfully re-
duced or removed three main packet processing costs:
per-packet dynamic memory allocations, removed by
preallocating resources; system call overheads, amor-
tized over large batches; and memory copies, elimi-
nated by sharing buffers and metadata between kernel
and userspace, while still protecting access to device reg-
isters and other kernel memory areas. Separately, some
of these techniques have been used in the past. The nov-
elty in our proposal is not only that we exceed the perfor-
mance of most of previous work, but also that we provide
an architecture that is tightly integrated with existing op-
erating system primitives, not tied to specific hardware,
and easy to use and maintain.

netmap has been implemented in FreeBSD and Linux
for several 1 and 10 Gbit/s network adapters. In our pro-
totype, a single core running at 900 MHz can send or
receive 14.88 Mpps (the peak packet rate on 10 Gbit/s
links). This is more than 20 times faster than conven-
tional APIs. Large speedups (5x and more) are also
achieved on user-space Click and other packet forward-
ing applications using a libpcap emulation library run-
ning on top of netmap.

∗This work was funded by the EU FP7 project CHANGE (257422).
†USENIX plans to publish this paper on the Proceedings

of the 2012 USENIX Annual Technical Conference, which will
be available at this URL after June 13, 2012. You may
also find this paper, with related material, on the author’s site,
http://info.iet.unipi.it/ luigi/netmap/

1 Introduction

General purpose OSes provide a rich and flexible envi-
ronment for running, among others, many packet pro-
cessing and network monitoring and testing tasks. The
high rate raw packet I/O required by these applica-
tions is not the intended target of general purpose OSes.
Raw sockets, the Berkeley Packet Filter [14] (BPF), the
AF SOCKET family, and equivalent APIs have been
used to build all sorts of network monitors, traffic gen-
erators, and generic routing systems. Performance, how-
ever, is inadequate for the millions of packets per sec-
ond (pps) that can be present on 1..10 Gbit/s links. In
search of better performance, some systems (see Sec-
tion 3) either run completely in the kernel, or bypass the
device driver and the entire network stack by exposing
the NIC’s data structures to user space applications. Ef-
ficient as they may be, many of these approaches depend
on specific hardware features, give unprotected access to
hardware, or are poorly integrated with the existing OS
primitives.

The netmap framework presented in this paper com-
bines and extends some of the ideas presented in the
past trying to address their shortcomings. Besides giving
huge speed improvements, netmap does not depend on
specific hardware1, has been fully integrated in FreeBSD
and Linux with minimal modifications, and supports un-
modified libpcap clients through a compatibility library.

One metric to evaluate our framework is performance:
in our implementation, moving one packet between the
wire and the userspace application has an amortized cost
of less than 70 CPU clock cycles, which is at least one
order of magnitude faster than standard APIs. In other
words, a single core running at 900 MHz can source or
sink the 14.88 Mpps achievable on a 10 Gbit/s link. The
same core running at 150 MHz is well above the capacity

1netmap can give isolation even without hardware mechanisms such
as IOMMU or VMDq, and is orthogonal to hardware offloading and
virtualization mechanisms (checksum, TSO, LRO, VMDc, etc.)

1

USENIX Association 2016 USENIX Annual Technical Conference 43

StackMap: Low-Latency Networking with the OS Stack and Dedicated NICs

Kenichi Yasukata†1, Michio Honda2, Douglas Santry2, and Lars Eggert2
1Keio University

2NetApp

Abstract
StackMap leverages the best aspects of kernel-bypass

networking into a new low-latency Linux network service
based on the full-featured TCP kernel implementation, by
dedicating network interfaces to applications and offering
an extended version of the netmap API as a zero-copy, low-
overhead data path while retaining the socket API for the
control path. For small-message, transactional workloads,
StackMap outperforms baseline Linux by 4 to 80 % in
latency and 4 to 391 % in throughput. It also achieves
comparable performance with Seastar, a highly-optimized
user-level TCP/IP stack for DPDK.

1 Introduction
The TCP/IP protocols are typically implemented as part of
an operating system (OS) kernel and exposed to applica-
tions through an application programming interface (API)
such as the socket API [61] standard. This protects and
isolates applications from one another and allows the OS
to arbitrate access to network resources. Applications can
focus on implementing their specific higher-level func-
tionality and need not deal with the details of network
communication.

A shared kernel implementation of TCP/IP has other
advantages. The commercialization of the Internet has
required continuous improvements to end-to-end data
transfers. A collaboration between commercial and open
source developers, researchers and IETF participants over
at least the last 25 years has been improving TCP/IP to
scale to increasingly diverse network characteristics [11,
39, 58], growing traffic volumes [13, 32], and improved
tolerance to throughput fluctuations and reduced transmis-
sion latencies [1, 10, 49].

A modern TCP/IP stack is consequently a complex,
highly optimized and analyzed piece of software. Due to
these complexities, only a small number of stacks (e.g.,

†Most of the research was done during an internship at NetApp.

Linux, Windows, Apple, BSD) have a competitive feature
set and performance, and therefore push the vast majority
of traffic. Because of this relatively small number of OS
stacks (compared to the number of applications), TCP/IP
improvements have a well-understood and relatively easy
deployment path via kernel updates, without the need to
change applications.

However, implementing TCP/IP in the kernel also has
downsides, which are becoming more pronounced with
larger network capacities and applications that are more
sensitive to latency and jitter. Kernel data processing
and queueing delays now dominate end-to-end latencies,
particularly over uncongested network paths. For example,
the fabric latency across a datacenter network is typically
only a few µs. But a minimal HTTP transaction over the
same fabric, consisting of a short “GET” request and an
“OK” reply, takes tens to hundreds of µs (see Section 3).

Several recent proposals attempt to avoid these over-
heads in a radical fashion: they bypass the kernel stack and
instead implement all TCP/IP processing inside the appli-
cation in user space [24, 29, 37] or in a virtual machine
context [4]. Although successful in avoiding overheads,
these kernel-bypass proposals also do away with many
of the benefits of a shared TCP/IP implementation: They
usually implement a simplistic flavor of TCP/IP that does
not include many of the performance optimizations of the
OS stacks, it is unclear if and by whom future protocol im-
provements would be implemented and deployed, and the
different TCP/IP versions used by different applications
may negatively impact one another in the network.

It is questionable whether kernel-bypass approaches
are suitable even for highly specialized network environ-
ments such as datacenters. Due to economic reasons [17],
they are assembled from commodity switches and do not
feature a centralized flow scheduler [2, 45]. Therefore,
path characteristics in such datacenters vary, and more
advanced TCP protocol features may be useful in order to
guarantee sub-millisecond flow completion times.

1

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

