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Review of Lectured Material

• Message passing systems 
• Limitations of threads and lock-based concurrency 

• Multicore memory models; composition of lock-based code 

• Concepts of message passing systems 
• Interaction models; communication and the type system; naming communications 

• Message handling; immutability; linear types; use of an exchange heap 

• Pattern matching and state machines 

• Error handling; let-it-crash philosophy; supervision hierarchies; case study 

• Scala+Akka, Rust, Singularity, and Erlang as examples
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Key Points

• Understand the concepts of actor-based message passing 
programming languages and systems 

• Reflect on the suitability of message passing as a concurrency 
primitive for future systems 
• Advantages and disadvantages compared to lock-based concurrency with 

shared mutable state
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Discussion

• J. Armstrong, “Erlang”, Communications of the ACM, 
53(9), Sept. 2010, DOI: 10.1145/1810891.1810910 

• Does the programming model make sense? 
• Purely functional with immutable data 

• Software isolated processes (i.e., actors) with message passing 
and no shared mutable state 

• Syntax and type system 

• Relation to Singularity? 

• Independent of Erlang, is the message passing approach a good 
alternative to the threads-and-locks model of concurrency? 

• Are problems with race conditions, deadlock, etc., solved? 

• Does the reliability model (“let it crash”) make sense? 
• Move error handling to a separate process 

• Replication and fault tolerance at the process level 

• Do you believe in independent failures of software processes? 

• Is dynamic typing required to enable upgrade of running 
systems?
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ERLANG IS  A  concurrent programming language 
designed for programming fault-tolerant distributed 
systems at Ericsson and has been (since 2000) freely 
available subject to an open-source license. More 
recently, we’ve seen renewed interest in Erlang, as 
the Erlang way of programming maps naturally to 
multicore computers. In it the notion of a process is 
fundamental, with processes created and managed 
by the Erlang runtime system, not by the underlying 
operating system. The individual processes, which are 
programmed in a simple dynamically typed functional 
programming language, do not share memory and 
exchange data through message passing, simplifying 
the programming of multicore computers. 

Erlang2 is used for programming fault-tolerant, 
distributed, real-time applications. What differentiates 
it from most other languages is that it’s a concurrent 
programming language; concurrency belongs to  
the language, not to the operating system. Its 
programs are collections of parallel processes 
cooperating to solve a particular problem that can  
be created quickly and have only limited memory 

overhead; programmers can create 
large numbers of Erlang processes yet 
ignore any preconceived ideas they 
might have about limiting the number 
of processes in their solutions. 

All Erlang processes are isolated 
from one another and in principle 
are “thread safe.” When Erlang ap-
plications are deployed on multicore 
computers, the individual Erlang pro-
cesses are spread over the cores, and 
programmers do not have to worry 
about the details. The isolated pro-
cesses share no data, and polymor-
phic messages can be sent between 
processes. In supporting strong iso-
lation between processes and poly-
morphism, Erlang could be viewed 
as extremely object-oriented though 
without the usual mechanisms associ-
ated with traditional OO languages. 

Erlang has no mutexes, and pro-
cesses cannot share memory.a Even 
within a process, data is immutable. 
The sequential Erlang subset that ex-
ecutes within an individual process is a 
dynamically typed functional program-
ming language with immutable state.b 
Moreover, instead of classes, methods, 
and inheritance, Erlang has modules 
that contain functions, as well as high-
er-order functions. It also includes pro-
cesses, sophisticated error handling, 
code-replacement mechanisms, and a 
large set of libraries. 

Here, I outline the key design crite-
ria behind the language, showing how 
they are reflected in the language itself, 
as well as in programming language 
technology used since 1985. 

Shared Nothing 
The Erlang story began in mid-1985 
when I was a new employee at the Er-
icsson Computer Science Lab in Stock-

a The shared memory is hidden from the pro-
grammer. Practically all application program-
mers never use primitives that manipulate 
shared memory; the primitives are intended 
for writing special system processes and not 
normally exposed to the programmer.

b This is not strictly true; processes can mutate 
local data, though such mutation is discour-
aged and rarely necessary.

Erlang
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The same component isolation that made 
it effective for large distributed telecom 
systems makes it effective for multicore  
CPUs and networked applications. 
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