
Colin Perkins | https://csperkins.org/ | Copyright © 2017 | This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-nd/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Region-based Memory Management

Advanced Operating Systems
Tutorial 3

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Review of Lectured Material

• Region-based memory management
• Relation to stack-based management of local variables

• Ownership and tracking changes to ownership

• Borrow – shared references to immutable data vs. unique references to
mutable data

• Safety guarantees

• Limitations – cyclic data structures and shared ownership

2

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Key Learning Outcomes

• Understand how ownership rules allow automatic memory
management

• Understand how borrowing rules enforce safety, and what safety
guarantees are provided

3

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Discussion

• Reading for this tutorial:
• D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J.

Cheney, “Region-based memory management in Cyclone”, Proc.
ACM PLDI, Berlin, June 2002. DOI:10.1145/512529.512563

• Discussion
• What was Cyclone? Did the project’s goals make sense?

• How does the region-based memory management system
described differ from that outlined in the lecture?
• Dynamic regions – compare to the lexically scoped regions and

borrowing in Rust: how are regions defined for returned pointers?

• Mechanisms to specify regions for function parameters/return values

• Region polymorphism

• Interactions with the garbage collector?

• Other features added to C?
• Variable sized arrays, not-null pointers, new string type

• Ease of porting C code? Performance?

• Does it make sense to try to extend C with region-based memory
management?

4

Region-Based Memory Management in Cyclone ∗

Dan Grossman Greg Morrisett Trevor Jim†

Michael Hicks Yanling Wang James Cheney

Computer Science Department
Cornell University
Ithaca, NY 14853
{danieljg,jgm,mhicks,wangyl,jcheney}@cs.cornell.edu

†AT&T Labs Research
180 Park Avenue
Florham Park, NJ 07932
trevor@research.att.com

ABSTRACT
Cyclone is a type-safe programming language derived from
C. The primary design goal of Cyclone is to let program-
mers control data representation and memory management
without sacrificing type-safety. In this paper, we focus on
the region-based memory management of Cyclone and its
static typing discipline. The design incorporates several ad-
vancements, including support for region subtyping and a
coherent integration with stack allocation and a garbage col-
lector. To support separate compilation, Cyclone requires
programmers to write some explicit region annotations, but
a combination of default annotations, local type inference,
and a novel treatment of region effects reduces this burden.
As a result, we integrate C idioms in a region-based frame-
work. In our experience, porting legacy C to Cyclone has
required altering about 8% of the code; of the changes, only
6% (of the 8%) were region annotations.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features—dynamic storage management

General Terms
Languages

1. INTRODUCTION
Many software systems, including operating systems, de-

vice drivers, file servers, and databases require fine-grained

∗This research was supported in part by Sloan grant BR-
3734; NSF grant 9875536; AFOSR grants F49620-00-1-
0198, F49620-01-1-0298, F49620-00-1-0209, and F49620-01-
1-0312; ONR grant N00014-01-1-0968; and NSF Graduate
Fellowships. Any opinions, findings, and conclusions or rec-
ommendations expressed in this publication are those of the
authors and do not reflect the views of these agencies.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PLDI’02, June 17-19, 2002, Berlin, Germany.
Copyright 2002 ACM 1-58113-463-0/02/0006 ...$5.00.

control over data representation (e.g., field layout) and re-
source management (e.g., memory management). The de
facto language for coding such systems is C. However, in
providing low-level control, C admits a wide class of danger-
ous — and extremely common — safety violations, such as
incorrect type casts, buffer overruns, dangling-pointer deref-
erences, and space leaks. As a result, building large systems
in C, especially ones including third-party extensions, is per-
ilous. Higher-level, type-safe languages avoid these draw-
backs, but in so doing, they often fail to give programmers
the control needed in low-level systems. Moreover, porting
or extending legacy code is often prohibitively expensive.
Therefore, a safe language at the C level of abstraction, with
an easy porting path, would be an attractive option.

Toward this end, we have developed Cyclone [6, 19], a
language designed to be very close to C, but also safe. We
have written or ported over 110,000 lines of Cyclone code,
including the Cyclone compiler, an extensive library, lexer
and parser generators, compression utilities, device drivers,
a multimedia distribution overlay network, a web server,
and many smaller benchmarks. In the process, we identified
many common C idioms that are usually safe, but which the
C type system is too weak to verify. We then augmented the
language with modern features and types so that program-
mers can still use the idioms, but have safety guarantees.

For example, to reduce the need for type casts, Cyclone
has features like parametric polymorphism, subtyping, and
tagged unions. To prevent bounds violations without mak-
ing hidden data-representation changes, Cyclone has a va-
riety of pointer types with different compile-time invariants
and associated run-time checks. Other projects aimed at
making legacy C code safe have addressed these issues with
somewhat different approaches, as discussed in Section 7.

In this paper, we focus on the most novel aspect of Cy-
clone: its system for preventing dangling-pointer derefer-
ences and space leaks. The design addresses several seem-
ingly conflicting goals. Specifically, the system is:

• Sound: Programs never dereference dangling pointers.

• Static: Dereferencing a dangling pointer is a compile-
time error. No run-time checks are needed to deter-
mine if memory has been deallocated.

• Convenient: We minimize the need for explicit pro-
grammer annotations while supporting many C id-
ioms. In particular, many uses of the addresses of local
variables require no modification.

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

