fi? University

e QfGlang 60 YEARS OF
COMPUTING
AT GLASGOW

School of
Computing Science

Virtualisation: Jails and Unikernels

Advanced Operating Systems
Lecture 18

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/

Lecture Outline

e Alternatives to full virtualisation

e Sandboxing processes:

e FreeBSD jails and Linux containers

» Container management

e Unikernels and library operating systems

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Alternatives to Full Virtualisation

o Full operating system virtualisation is expensive

 Need to run a hypervisor
 Need to run a complete guest operating system instance for each VM

 High memory and storage overhead, high CPU load from running multiple
OS instances on a single machine — but excellent isolation between VMs

 Running multiple services on a single OS instance can offer
insufficient isolation

e All must share the same OS

 Abug in a privileged service can easily compromise entire system — all
services running on the host, and any unrelated data

e A sandbox is desirable — to isolate multiple services running on a
single operating system

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Sandboxing: Jails and Containers

e Concept — lightweight virtualisation

e A single operating system kernel
e Multiple services

e Each service runs within a jail a service
specific container, running just what's needed
for that application

e Jail restricted to see only a subset of the
filesystem and processes of the host

e A sandbox within the operating system

e Partially virtualised

‘e
‘e
3

g /bin
i:/dev
i letc

‘e

L]
0
. ®
L] L4
NS
o G
.. * N
*
* K]
g
g
g
‘. /loca
L
o ¢
»

/b

.Q’
:’
(S o
X /l ISE &-eeee
\J
DAY 3
e .
. .,
AALS

.t
“ * LK S
. . .
Te e . .
- *
. I . -
= (3
LY *
L (3
.y L3

/tmp

s Jvar

*
&
*
.
*

/lib
/sbin

* /share

i /bin
/dev
i letc

/mail

.

‘=’¢ o

* LN
G

L
ty &
K
L R
=+« /home
'S o
e
*

/b

.
‘:“‘
=% JUSI
-“‘
o 2,
A .
L
» " /sbin
te
e
te
s .
20
“‘
.
'. /tlllp
.
.

* Jvar

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Example: FreeBSD Jail subsystem

Jails: Confining the omnipotent root.

Poul-Henning Kamp <phk@ FreeBSD .org>
Robert N. M. Watson <rwatson@ FreeBSD .org>
The FreeBSD Project

ABSTRACT

The traditional UNIX security model is simple but inexpressive.
Adding fine-grained access control improves the expressiveness, but
often dramatically increases both the cost of system management and
implementation complexity. In environments with a more complex man-
agement model, with delegation of some management functions to par-
ties under varying degrees of trust, the base UNIX model and most natu-
ral extensions are inappropriate at best. Where multiple mutually un-
trusting parties are introduced, “‘inappropriate”” rapidly transitions to
“nightmarish”, especially with regards to data integrity and privacy pro-
tection.

The FreeBSD ““Jail” facility provides the ability to partition the operat-
ing system environment, while maintaining the simplicity of the UNIX
“root” model. In Jail, users with privilege find that the scope of their
requests is limited to the jail, allowing system administrators to delegate
management capabilities for each virtual machine environment. Creating
virtual machines in this manner has many potential uses; the most popu-
lar thus far has been for providing virtual machine services in Internet
Service Provider environments.

1. Introduction

The UNIX access control mechanism is designed for an environment with two types
of users: those with, and without administrative privilege. Within this framework, every
attempt is made to provide an open system, allowing easy sharing of files and inter-pro-
cess communication. As a member of the UNIX family, FreeBSD inherits these secu-
rity properties. Users of FreeBSD in non-traditional UNIX environments must balance
their need for strong application support, high network performance and functionality,

This work was sponsored by http://www.servetheweb.com/ and donated to
the FreeBSD Project for inclusion in the FreeBSD OS. FreeBSD 4.0-RELEASE was
the first release including this code. Follow-on work was sponsored by Safeport Net-
work Services, http://www.safeport.com/

Unix has long had chroot ()

* Limits process to see a subset of the filesystem

e Usedin, e.g., web servers, to prevent buggy
code from serving files outside chosen directory

Jails extend this to also restrict access to
other resources for jailed processes:

* Limits process to see subset of the processes
(the children of the initially jailed process)

* Limits process to see specific network interface

* Prevents a process from mounting/un-mounting
file systems, creating device nodes, loading
kernel modules, changing kernel parameters,
configuring network interfaces, etc.

* Even if running with root privilege
Processes outside the jail can see into

the jail — from outside, jailed processes
look like regular processes

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Benefits of Jails

o Extremely lightweight implementation

 Processes in the jail are regular Unix processes, with some additional
privilege checks

 FreeBSD implementation added/modified ~1,000 lines of code in total

e Contents of the jail are limited: it's not a full operating system — just the set of
binaries/libraries needed for the application

o Straightforward system administration

e Few new concepts: no need to learn how to operate the hypervisor

e Visibility into the jail eases debugging and administration; no new tools
* Portable

 No separate hypervisor, with its own device drivers, needed

e If the base system runs, so do the jails

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Disadvantages of Jails

 Virtualisation is imperfect

e Full virtual machines can provide stronger isolation and performance
guarantees — processes in jail can compete for resources with other
processes in the system, and observe the effects of that competition

e A process can discover that it's running in a jail — a process in a VM cannot
determine that it's in a VM

 Jails are tied to the underlying operating system

e A virtual machine can be paused, migrated to a different physical system,
and resumed, without processes in the VM being aware — a jail cannot

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Example: Linux Containers

e Two inter-related kernel features:

Namespace isolation — separation of processes

Control groups “cgroups” — accounting for process CPU, memory, disk and
network 1/O usage

Both part of the mainline Linux kernel

 Combined to provide container-based virtualisation

” 14 7 13

Implemented via tools such as “Ixc”, “OpenVZ", “Linux-VServer”

Very similar functionality to FreeBSD Jails, but using the Linux kernel as the
underlying OS

Run a subset of processes within a containers — can be a full OS-like
environment, or something much for limited

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Example: iOS/macOS Sandbox

e All apps on iOS, and all apps from the Mac App Store on
macOS, are sandboxed

e Sandbox functionality varies with macOS/iOS version — gradually
getting more sophisticated and more secure

o Kernel heavily based on FreeBSD, but sandboxing doesn’t use Jails

Mandatory access control — http://www.trustedbsd.org/mac.html

Apps are constrained to see a particular directory hierarchy — but given
flexibility to see other directories outside this based on user input

Policy language allows flexible control over what OS functions are
restricted — restricts access to files, processes, and other namespaces
like Jails, but more flexibility in what parts of the system are exposed

At most restrictive, looks like a FreeBSD Jail containing a single-process
and it's data directories

Can allow access to other OS services/directories as needed — more
flexible, but more complex and hence harder to sandbox correctly

 Heavily based on Robert Watson’s PhD and work on FreeBSD MAC
and Capsicum security framework

http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-818.pdf

e Trade-off: flexibility, complexity, security

Technical Report

Number 818

B8 UNIVERSITY OF
@¥ CAMBRIDGE
Computer Laboratory

New approaches to operating
system security extensibility

Robert N. M. Watson

April 2012

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-818.pdf

Container Management

o Full virtualisation — VMs run complete OS, and can use standard
OS update/management procedures

e Jails run a container with a subset of the full OS

e Want minimal stack needed to support services running in the container

e |Less software installed in container — security vulnerability less likely

 How to ensure all images are up-to-date?

* No longer sufficient to patch the OS, must also patch each container

 Need to minimally subset the OS for the services in the container — can this
be automated?

 How to share service/container configuration?

10

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Example: Docker

e DockerFile and context specify an image

Base system image
docker build
* Docker maintains official, managed and security updated,

images for popular operating systems
* |mages can build on/extend other images

Install additional binaries and libraries

Install additional data docker run

Commands to execute when image is instantiated

Metadata about resulting image

 Images are immutable — instantiated in container

Virtualisation uses Linux containers, the macOS sandbox, or FreeBSD jails to instantiate
images, depending on underlying operating system running the container

* macOS and Windows run Linux in a hypervisor, and use that to execute containers
* FreeBSD relies on native Linux system call emulation, and jails

Image can specify external filesystems to mount, to hold persistent data accessible by
running image

A standardised way of packaging a software image to run in a container — plus easy-to-
manage tools for instantiating a container

11

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Unikernels: Library Operating Systems

e Taking the idea of service-specific containers to
its logical extreme — a library operating system

e Well-implemented kernels have clear interfaces
between components

o Device drivers, filesystems, network protocols, processes, ...

 Implement as a set of libraries, that can link with
an application

e Only compile in the subset of functions needed to run the
desired application (e.g., you don’t use UDP, it isn’t linked
in to your kernel, etc...)

Configuration Files

Application Binary

Language Runtime

Parallel Threads

Mirage Compiler
application source code
configuration files
hardware architecture
whole-system optimisation

User Processes

OS Kernel

Mirage Runtime unikernel

 Application Code } specialised

Hypervisor

Hypervisor

Hardware

Hardware

e Link entire operating system kernel and application as a single binary

e Run on bare hardware, or within a hypervisor

e Typically written in high-level, type-safe, languages, with expressive module

systems — not backwards compatible with Unix
 E.g., MirageOS largely written in OCaml

o Type-safe languages give clear interface boundaries, to enable automatic minimisation of

Images

12

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://dx.doi.org/10.1145/2451116.2451167

Further Reading

e P.-H. Kamp and R. Watson, “Jails: Confining the omnipotent

root”, System Administration and Network Engineering
Conference, May 2000.
http://www.sane.nl/events/sane2000/papers/kamp.pdf

 A. Madhavapeddy et al.
Systems for the Cloud”, ACM ASPLOS, Houston, TX, USA,

Trade-offs vs. complete system virtualisation?
Overheads vs. flexibility vs. ease of management?

Benefits of Docker-style configuration of images

‘Unikernels: Library Operating

March 2013. DOI:10.1145/2451116.2451167

|s optimising operating system for single application going too far?
Are unikernels maintainable?

Relation to containers and hypervisors?

Jails: Confining the omnipotent root.

Poul-Henning Kamp <phk@FreeBSD.org>
Robert N. M. Watson <rwatson@FreeBSD.org>
The FreeBSD Project

ABSTRACT

The traditional UNIX security model is simple but inexpressive.
Adding fine-grained access control improves the expressiveness, but
otlcn dmmdt ally increases both lhc cost of system management and

complexity. In s with a more complex man-
agement model, with delegation of some management functions to par-
ties under varying degrees of trust, the base UNIX model and most natu-
ral extensions are inappropriate at best. Where multiple mutually un-
trusting parties are introduced, “‘inappropriate” rapidly transitions to
“nightmarish™, especially with regards to data integrity and privacy pro-
tection.

 The FreeBSD “Jail”” facility provides the ability to partition the operat-
stem environment, while maintaining the simplicity of the UNIX
root” model. In Jail, users with privilege find that the scope of their
requests is limited to the jail, allowing system administrators to delegate
‘management capabilities for each virtual machine environment. Creating
virtual machines in this manner has many potential uses; the most popu-
lar thus far has been for providing virtual machine services in Internet
Service Provider environments.

1. Introduction

The UNIX access control mechanism is designed for an environment with two types
of users: those with, and without administrative privilege. Within this framework, every
attempt is made to provide an open system, allowing easy sharing of files and inter-pro-
cess communication. As a member of the UNIX family, FreeBSD inherits these secu-
rity properties. Users of FreeBSD in non-traditional UNIX environments must balance
their need for strong application support, high network performance and functionality,

‘This work was sponsored by http: //www. servetheweb.com/ and donated to
the FreeBSD Project for inclusion in the FreeBSD OS. FreeBSD 4.0-RELEASE was
the first release including this code. Follow-on work was sponsored by Safeport Net-
work Services, http: //www . safeport .com

—

Unikernels: Library Operating Systems for the Cloud

Anil Madhavapeddy, Richard Mortier!, Charalampos Rotsos, David Scott?, Balraj Singh,
‘Thomas G re?, Steven Smith, Steven Hand and Jon Crowcroft

University of Cambr
first st k

University of Not

i, Citrx Systems Lid, OCumIPro SAS”
a

Abstract Configuration Files Mirage Compiler
We present anikermels, a new services opplicaion source code
ce code. Unikemels are Application Binary configurtion fies
urpos me specialised into hardware archiecture
Sandilone ermeh and scled against medifcation when depoyed Language Runcime

104 cloud platorm. In retun thy oifer significant reduction in PREE—
User Processes | [Appication Cote |\ specalsed
OS Kernel Mirage Runtime unikernel

Fypervisor Fypervisor

Fardvare Hardware

Figure 1: Contras
unikenel's stands

ersin existing VM appliances vs
Categories and Subject Descriptors .4 [Operating Systems]: lation approach.
Oreanization and Design; D1 (Programming Technigues]: Ap

plicaive (Functional) Programming safety need not damage performance; and (i) libraries and lan-

General Terms Experimentation, Performance

1. Introduction ire
plications is compiled into a singl
runs directly on standard hypervisor (i

Operin syt virulzaionhes rovluonsd the economics
i Standard hypervisor, unikernels avoid

of I providing a platform on which cus-

omers rent resources 1 hot viral machines (VARS). Each VA

and running Each VMis muﬂl»

s ooy ndiond iy 08 s n Exok
nel [1] and Nemesis [2], By eschewing backward compatbility, in

specialised to a particular role, .g.,a database, a webse
olves cloning VM:

ation of thes techniques usi
OCami howing e et o e

than desktop applications. By targeting the commodity cloud with

our OCami et Mirai mpmemtion 65
micro-benchmarks and appliances provi
HTTP (i), We find sacrif

ity

ek ot

the security of external- oud Setvices. We retain compati

sk ks ch
ort POSIX or other conven.

ol sndars for Lpplcuion constructon: For xample, he Mi

DNS erver uperors both BIND

Pertormance NSD torver

ing very much smaller
o Jot 200K while

B, de by discussing
ind it position within th state of

the BIND appliance was ovi
our experiences building M;
the at (55, and concluding.

T—

13

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://www.apple.com

