
Colin Perkins | https://csperkins.org/ | Copyright © 2017 | This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-nd/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Virtualisation: Jails and Unikernels

Advanced Operating Systems
Lecture 18

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Lecture Outline

• Alternatives to full virtualisation

• Sandboxing processes:
• FreeBSD jails and Linux containers

• Container management

• Unikernels and library operating systems

2

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Alternatives to Full Virtualisation

• Full operating system virtualisation is expensive
• Need to run a hypervisor

• Need to run a complete guest operating system instance for each VM

• High memory and storage overhead, high CPU load from running multiple
OS instances on a single machine – but excellent isolation between VMs

• Running multiple services on a single OS instance can offer
insufficient isolation
• All must share the same OS

• A bug in a privileged service can easily compromise entire system – all
services running on the host, and any unrelated data

• A sandbox is desirable – to isolate multiple services running on a
single operating system

3

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Sandboxing: Jails and Containers

• Concept – lightweight virtualisation
• A single operating system kernel

• Multiple services

• Each service runs within a jail a service
specific container, running just what’s needed
for that application

• Jail restricted to see only a subset of the
filesystem and processes of the host
• A sandbox within the operating system

• Partially virtualised

4

/

/bin
/dev
/etc
/home

/usr
/sbin
/tmp
/var

/lib /local
/lib
/sbin
/share

/jail /www
/mail

/bin
/dev
/etc
/home

/usr
/sbin
/tmp
/var

/lib

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Example: FreeBSD Jail subsystem

• Unix has long had chroot()
• Limits process to see a subset of the filesystem

• Used in, e.g., web servers, to prevent buggy
code from serving files outside chosen directory

• Jails extend this to also restrict access to
other resources for jailed processes:
• Limits process to see subset of the processes

(the children of the initially jailed process)

• Limits process to see specific network interface

• Prevents a process from mounting/un-mounting
file systems, creating device nodes, loading
kernel modules, changing kernel parameters,
configuring network interfaces, etc.

• Even if running with root privilege

• Processes outside the jail can see into
the jail – from outside, jailed processes
look like regular processes

5

Jails: Confining the omnipotent root.

Poul-Henning Kamp <phk@FreeBSD.org>

Robert N. M. Watson <rwatson@FreeBSD.org>

The FreeBSD Project

ABSTRACT

The traditional UNIX security model is simple but inexpressive.
Adding fine-grained access control improves the expressiveness, but
often dramatically increases both the cost of system management and
implementation complexity. In environments with a more complex man-
agement model, with delegation of some management functions to par-
ties under varying degrees of trust, the base UNIX model and most natu-
ral extensions are inappropriate at best. Where multiple mutually un-
trusting parties are introduced, ‘‘inappropriate’’ rapidly transitions to
‘‘nightmarish’’, especially with regards to data integrity and privacy pro-
tection.

The FreeBSD ‘‘Jail’’ facility provides the ability to partition the operat-
ing system environment, while maintaining the simplicity of the UNIX
‘‘root’’ model. In Jail, users with privilege find that the scope of their
requests is limited to the jail, allowing system administrators to delegate
management capabilities for each virtual machine environment. Creating
virtual machines in this manner has many potential uses; the most popu-
lar thus far has been for providing virtual machine services in Internet
Service Provider environments.

1. Introduction
The UNIX access control mechanism is designed for an environment with two types

of users: those with, and without administrative privilege. Within this framework, every
attempt is made to provide an open system, allowing easy sharing of files and inter-pro-
cess communication. As a member of the UNIX family, FreeBSD inherits these secu-
rity properties. Users of FreeBSD in non-traditional UNIX environments must balance
their need for strong application support, high network performance and functionality,

This work was sponsored by http://www.servetheweb.com/ and donated to
the FreeBSD Project for inclusion in the FreeBSD OS. FreeBSD 4.0-RELEASE was
the first release including this code. Follow-on work was sponsored by Safeport Net-
work Services, http://www.safeport.com/

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Benefits of Jails

• Extremely lightweight implementation
• Processes in the jail are regular Unix processes, with some additional

privilege checks

• FreeBSD implementation added/modified ~1,000 lines of code in total

• Contents of the jail are limited: it’s not a full operating system – just the set of
binaries/libraries needed for the application

• Straightforward system administration
• Few new concepts: no need to learn how to operate the hypervisor

• Visibility into the jail eases debugging and administration; no new tools

• Portable
• No separate hypervisor, with its own device drivers, needed

• If the base system runs, so do the jails

6

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Disadvantages of Jails

• Virtualisation is imperfect
• Full virtual machines can provide stronger isolation and performance

guarantees – processes in jail can compete for resources with other
processes in the system, and observe the effects of that competition

• A process can discover that it’s running in a jail – a process in a VM cannot
determine that it’s in a VM

• Jails are tied to the underlying operating system
• A virtual machine can be paused, migrated to a different physical system,

and resumed, without processes in the VM being aware – a jail cannot

7

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Example: Linux Containers

• Two inter-related kernel features:
• Namespace isolation – separation of processes

• Control groups “cgroups” – accounting for process CPU, memory, disk and
network I/O usage

• Both part of the mainline Linux kernel

• Combined to provide container-based virtualisation
• Implemented via tools such as “lxc”, “OpenVZ”, “Linux-VServer”

• Very similar functionality to FreeBSD Jails, but using the Linux kernel as the
underlying OS

• Run a subset of processes within a containers – can be a full OS-like
environment, or something much for limited

8

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Example: iOS/macOS Sandbox

• All apps on iOS, and all apps from the Mac App Store on
macOS, are sandboxed
• Sandbox functionality varies with macOS/iOS version – gradually

getting more sophisticated and more secure

• Kernel heavily based on FreeBSD, but sandboxing doesn’t use Jails
• Mandatory access control – http://www.trustedbsd.org/mac.html

• Apps are constrained to see a particular directory hierarchy – but given
flexibility to see other directories outside this based on user input

• Policy language allows flexible control over what OS functions are
restricted – restricts access to files, processes, and other namespaces
like Jails, but more flexibility in what parts of the system are exposed

• At most restrictive, looks like a FreeBSD Jail containing a single-process
and it’s data directories

• Can allow access to other OS services/directories as needed – more
flexible, but more complex and hence harder to sandbox correctly

• Heavily based on Robert Watson’s PhD and work on FreeBSD MAC
and Capsicum security framework
• http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-818.pdf

• Trade-off: flexibility, complexity, security

9

Technical Report

Number 818

Computer Laboratory

UCAM-CL-TR-818
ISSN 1476-2986

New approaches to operating
system security extensibility

Robert N. M. Watson

April 2012

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www.cl.cam.ac.uk/

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-818.pdf

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Container Management

• Full virtualisation – VMs run complete OS, and can use standard
OS update/management procedures

• Jails run a container with a subset of the full OS
• Want minimal stack needed to support services running in the container

• Less software installed in container → security vulnerability less likely

• How to ensure all images are up-to-date?
• No longer sufficient to patch the OS, must also patch each container

• Need to minimally subset the OS for the services in the container – can this
be automated?

• How to share service/container configuration?

10

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Example: Docker

• DockerFile and context specify an image
• Base system image

• Docker maintains official, managed and security updated,  
images for popular operating systems

• Images can build on/extend other images

• Install additional binaries and libraries

• Install additional data

• Commands to execute when image is instantiated

• Metadata about resulting image

• Images are immutable → instantiated in container
• Virtualisation uses Linux containers, the macOS sandbox, or FreeBSD jails to instantiate

images, depending on underlying operating system running the container
• macOS and Windows run Linux in a hypervisor, and use that to execute containers

• FreeBSD relies on native Linux system call emulation, and jails

• Image can specify external filesystems to mount, to hold persistent data accessible by
running image

• A standardised way of packaging a software image to run in a container – plus easy-to-
manage tools for instantiating a container

11

Context
DockerFile

Image

docker build

Containerdocker run

Virtualisation Engine

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Unikernels: Library Operating Systems

• Taking the idea of service-specific containers to  
its logical extreme – a library operating system

• Well-implemented kernels have clear interfaces  
between components
• Device drivers, filesystems, network protocols, processes, …

• Implement as a set of libraries, that can link with  
an application
• Only compile in the subset of functions needed to run the  

desired application (e.g., you don’t use UDP, it isn’t linked 
 in to your kernel, etc…)

• Link entire operating system kernel and application as a single binary

• Run on bare hardware, or within a hypervisor

• Typically written in high-level, type-safe, languages, with expressive module
systems – not backwards compatible with Unix
• E.g., MirageOS largely written in OCaml

• Type-safe languages give clear interface boundaries, to enable automatic minimisation of
images

12

Unikernels: Library Operating Systems for the Cloud

Anil Madhavapeddy, Richard Mortier1, Charalampos Rotsos, David Scott2, Balraj Singh,
Thomas Gazagnaire3, Steven Smith, Steven Hand and Jon Crowcroft

University of Cambridge, University of Nottingham1, Citrix Systems Ltd2, OCamlPro SAS3

first.last@cl.cam.ac.uk, first.last@nottingham.ac.uk, dave.scott@citrix.com, first@ocamlpro.com

Abstract

We present unikernels, a new approach to deploying cloud services
via applications written in high-level source code. Unikernels are
single-purpose appliances that are compile-time specialised into
standalone kernels, and sealed against modification when deployed
to a cloud platform. In return they offer significant reduction in
image sizes, improved efficiency and security, and should reduce
operational costs. Our Mirage prototype compiles OCaml code into
unikernels that run on commodity clouds and offer an order of
magnitude reduction in code size without significant performance
penalty. The architecture combines static type-safety with a single
address-space layout that can be made immutable via a hypervisor
extension. Mirage contributes a suite of type-safe protocol libraries,
and our results demonstrate that the hypervisor is a platform that
overcomes the hardware compatibility issues that have made past
library operating systems impractical to deploy in the real-world.

Categories and Subject Descriptors D.4 [Operating Systems]:
Organization and Design; D.1 [Programming Techniques]: Ap-
plicative (Functional) Programming

General Terms Experimentation, Performance

1. Introduction

Operating system virtualization has revolutionised the economics
of large-scale computing by providing a platform on which cus-
tomers rent resources to host virtual machines (VMs). Each VM
presents as a self-contained computer, booting a standard OS kernel
and running unmodified application processes. Each VM is usually
specialised to a particular role, e.g., a database, a webserver, and
scaling out involves cloning VMs from a template image.

Despite this shift from applications running on multi-user op-
erating systems to provisioning many instances of single-purpose
VMs, there is little actual specialisation that occurs in the image
that is deployed to the cloud. We take an extreme position on spe-
cialisation, treating the final VM image as a single-purpose appli-
ance rather than a general-purpose system by stripping away func-
tionality at compile-time. Specifically, our contributions are: (i) the
unikernel approach to providing sealed single-purpose appliances,
particularly suitable for providing cloud services; (ii) evaluation of
a complete implementation of these techniques using a functional
programming language (OCaml), showing that the benefits of type-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ASPLOS’13, March 16–20, 2013, Houston, Texas, USA.
Copyright c⃝ 2013 ACM 978-1-4503-1870-9/13/03. . . $15.00

Mirage Compiler

Hardware

Hypervisor

OS Kernel

User Processes

Language Runtime

Parallel Threads

Application Binary

Mirage Runtime

Hardware

Hypervisor

Application Code

Configuration Files
application source code
configuration files
hardware architecture
whole-system optimisation

specialised
unikernel}

Figure 1: Contrasting software layers in existing VM appliances vs.
unikernel’s standalone kernel compilation approach.

safety need not damage performance; and (iii) libraries and lan-
guage extensions supporting systems programming in OCaml.

The unikernel approach builds on past work in library OSs [1–
3]. The entire software stack of system libraries, language runtime,
and applications is compiled into a single bootable VM image that
runs directly on a standard hypervisor (Figure 1). By targeting a
standard hypervisor, unikernels avoid the hardware compatibility
problems encountered by traditional library OSs such as Exoker-
nel [1] and Nemesis [2]. By eschewing backward compatibility, in
contrast to Drawbridge [3], unikernels address cloud services rather
than desktop applications. By targeting the commodity cloud with
a library OS, unikernels can provide greater performance and im-
proved security compared to Singularity [4]. Finally, in contrast to
Libra [5] which provides a libOS abstraction for the JVM over Xen
but relies on a separate Linux VM instance to provide networking
and storage, unikernels are more highly-specialised single-purpose
appliance VMs that directly integrate communication protocols.

We describe a complete unikernel prototype in the form of
our OCaml-based Mirage implementation (§3). We evaluate it via
micro-benchmarks and appliances providing DNS, OpenFlow, and
HTTP (§4). We find sacrificing source-level backward compatibil-
ity allows us to increase performance while significantly improving
the security of external-facing cloud services. We retain compati-
bility with external systems via standard network protocols such as
TCP/IP, rather than attempting to support POSIX or other conven-
tional standards for application construction. For example, the Mi-
rage DNS server outperforms both BIND 9 (by 45%) and the high-
performance NSD server (§4.2), while using very much smaller
VM images: our unikernel appliance image was just 200 kB while
the BIND appliance was over 400 MB. We conclude by discussing
our experiences building Mirage and its position within the state of
the art (§5), and concluding (§6).

Source: A. Madhavapeddy et al., “Unikernels: Library Operating
Systems for the Cloud”, Proc. ACM ASPLOS, Houston, TX, USA,
March 2013. DOI:10.1145/2451116.2451167

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://dx.doi.org/10.1145/2451116.2451167

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Further Reading

• P.-H. Kamp and R. Watson, “Jails: Confining the omnipotent
root”, System Administration and Network Engineering
Conference, May 2000.  
http://www.sane.nl/events/sane2000/papers/kamp.pdf
• Trade-offs vs. complete system virtualisation?

• Overheads vs. flexibility vs. ease of management?

• Benefits of Docker-style configuration of images

• A. Madhavapeddy et al., “Unikernels: Library Operating
Systems for the Cloud”, ACM ASPLOS, Houston, TX, USA,
March 2013. DOI:10.1145/2451116.2451167
• Is optimising operating system for single application going too far?

• Are unikernels maintainable?

• Relation to containers and hypervisors?

13

Jails: Confining the omnipotent root.

Poul-Henning Kamp <phk@FreeBSD.org>

Robert N. M. Watson <rwatson@FreeBSD.org>

The FreeBSD Project

ABSTRACT

The traditional UNIX security model is simple but inexpressive.
Adding fine-grained access control improves the expressiveness, but
often dramatically increases both the cost of system management and
implementation complexity. In environments with a more complex man-
agement model, with delegation of some management functions to par-
ties under varying degrees of trust, the base UNIX model and most natu-
ral extensions are inappropriate at best. Where multiple mutually un-
trusting parties are introduced, ‘‘inappropriate’’ rapidly transitions to
‘‘nightmarish’’, especially with regards to data integrity and privacy pro-
tection.

The FreeBSD ‘‘Jail’’ facility provides the ability to partition the operat-
ing system environment, while maintaining the simplicity of the UNIX
‘‘root’’ model. In Jail, users with privilege find that the scope of their
requests is limited to the jail, allowing system administrators to delegate
management capabilities for each virtual machine environment. Creating
virtual machines in this manner has many potential uses; the most popu-
lar thus far has been for providing virtual machine services in Internet
Service Provider environments.

1. Introduction
The UNIX access control mechanism is designed for an environment with two types

of users: those with, and without administrative privilege. Within this framework, every
attempt is made to provide an open system, allowing easy sharing of files and inter-pro-
cess communication. As a member of the UNIX family, FreeBSD inherits these secu-
rity properties. Users of FreeBSD in non-traditional UNIX environments must balance
their need for strong application support, high network performance and functionality,

This work was sponsored by http://www.servetheweb.com/ and donated to
the FreeBSD Project for inclusion in the FreeBSD OS. FreeBSD 4.0-RELEASE was
the first release including this code. Follow-on work was sponsored by Safeport Net-
work Services, http://www.safeport.com/

Unikernels: Library Operating Systems for the Cloud

Anil Madhavapeddy, Richard Mortier1, Charalampos Rotsos, David Scott2, Balraj Singh,
Thomas Gazagnaire3, Steven Smith, Steven Hand and Jon Crowcroft

University of Cambridge, University of Nottingham1, Citrix Systems Ltd2, OCamlPro SAS3

first.last@cl.cam.ac.uk, first.last@nottingham.ac.uk, dave.scott@citrix.com, first@ocamlpro.com

Abstract

We present unikernels, a new approach to deploying cloud services
via applications written in high-level source code. Unikernels are
single-purpose appliances that are compile-time specialised into
standalone kernels, and sealed against modification when deployed
to a cloud platform. In return they offer significant reduction in
image sizes, improved efficiency and security, and should reduce
operational costs. Our Mirage prototype compiles OCaml code into
unikernels that run on commodity clouds and offer an order of
magnitude reduction in code size without significant performance
penalty. The architecture combines static type-safety with a single
address-space layout that can be made immutable via a hypervisor
extension. Mirage contributes a suite of type-safe protocol libraries,
and our results demonstrate that the hypervisor is a platform that
overcomes the hardware compatibility issues that have made past
library operating systems impractical to deploy in the real-world.

Categories and Subject Descriptors D.4 [Operating Systems]:
Organization and Design; D.1 [Programming Techniques]: Ap-
plicative (Functional) Programming

General Terms Experimentation, Performance

1. Introduction

Operating system virtualization has revolutionised the economics
of large-scale computing by providing a platform on which cus-
tomers rent resources to host virtual machines (VMs). Each VM
presents as a self-contained computer, booting a standard OS kernel
and running unmodified application processes. Each VM is usually
specialised to a particular role, e.g., a database, a webserver, and
scaling out involves cloning VMs from a template image.

Despite this shift from applications running on multi-user op-
erating systems to provisioning many instances of single-purpose
VMs, there is little actual specialisation that occurs in the image
that is deployed to the cloud. We take an extreme position on spe-
cialisation, treating the final VM image as a single-purpose appli-
ance rather than a general-purpose system by stripping away func-
tionality at compile-time. Specifically, our contributions are: (i) the
unikernel approach to providing sealed single-purpose appliances,
particularly suitable for providing cloud services; (ii) evaluation of
a complete implementation of these techniques using a functional
programming language (OCaml), showing that the benefits of type-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ASPLOS’13, March 16–20, 2013, Houston, Texas, USA.
Copyright c⃝ 2013 ACM 978-1-4503-1870-9/13/03. . . $15.00

Mirage Compiler

Hardware

Hypervisor

OS Kernel

User Processes

Language Runtime

Parallel Threads

Application Binary

Mirage Runtime

Hardware

Hypervisor

Application Code

Configuration Files
application source code
configuration files
hardware architecture
whole-system optimisation

specialised
unikernel}

Figure 1: Contrasting software layers in existing VM appliances vs.
unikernel’s standalone kernel compilation approach.

safety need not damage performance; and (iii) libraries and lan-
guage extensions supporting systems programming in OCaml.

The unikernel approach builds on past work in library OSs [1–
3]. The entire software stack of system libraries, language runtime,
and applications is compiled into a single bootable VM image that
runs directly on a standard hypervisor (Figure 1). By targeting a
standard hypervisor, unikernels avoid the hardware compatibility
problems encountered by traditional library OSs such as Exoker-
nel [1] and Nemesis [2]. By eschewing backward compatibility, in
contrast to Drawbridge [3], unikernels address cloud services rather
than desktop applications. By targeting the commodity cloud with
a library OS, unikernels can provide greater performance and im-
proved security compared to Singularity [4]. Finally, in contrast to
Libra [5] which provides a libOS abstraction for the JVM over Xen
but relies on a separate Linux VM instance to provide networking
and storage, unikernels are more highly-specialised single-purpose
appliance VMs that directly integrate communication protocols.

We describe a complete unikernel prototype in the form of
our OCaml-based Mirage implementation (§3). We evaluate it via
micro-benchmarks and appliances providing DNS, OpenFlow, and
HTTP (§4). We find sacrificing source-level backward compatibil-
ity allows us to increase performance while significantly improving
the security of external-facing cloud services. We retain compati-
bility with external systems via standard network protocols such as
TCP/IP, rather than attempting to support POSIX or other conven-
tional standards for application construction. For example, the Mi-
rage DNS server outperforms both BIND 9 (by 45%) and the high-
performance NSD server (§4.2), while using very much smaller
VM images: our unikernel appliance image was just 200 kB while
the BIND appliance was over 400 MB. We conclude by discussing
our experiences building Mirage and its position within the state of
the art (§5), and concluding (§6).

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://www.apple.com

