YEARS OF

University

& of Glasgow 60
School of
Computing Science

COMPUTING
AT GLASGOW

Virtualisation

Advanced Operating Systems
Lecture 17

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/

Lecture Outline

e \What is virtualisation?

e Full system virtualisation
e Hypervisors — type 1 and type 2

e \Virtualising CPUs, memory, device drivers

e Live migration

o Example: Xen

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Virtualisation Concepts

e Enable resource sharing by decoupling execution environments
from physical hardware

e Full system virtualisation — run multiple operating systems on a single
physical host; virtual machines (VMs)

e Desirable for data centres and cloud hosting environments — computing as a
service

e Benefits for flexible management and security

 Use isolation to protect services

e Containers — virtualise resources of interest

e Lightweight, but imperfect, virtualisation; constrains ability of a group of
processes to access system resources

 Enhances security within an operating system

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Full System Virtualisation

e Allow more than one operating system to
run on the same physical hardware

First implemented: IBM System/360 mainframe
— mid-1960s

Popular current implementations: Xen,
VMWare, QEMU, VirtualBox

e |Introduces hypervisor abstraction:

The hypervisor is a process that manages the
virtualisation, and emulates the hardware

* Processors
* Memory
e Device drivers

The guest operating systems run as processes
on the hypervisor

The hypervisor API presents a virtual machine
abstraction — each operating system thinks it's
running on real hardware

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Hardware Virtualisation: CPU

 Processors distinguish privileged and unprivileged operations

e Known as protection rings or privilege levels

* ARMY7 CPUs have “application”, “operating system”, and
“hypervisor” privileges

Ring 1
Ring 0

* x86 CPUs have four levels of numbered protection rings

Kernel

e Instructions that control I/O, interrupt handlers, virtual memory,
memory protection, etc., tend to be privileged

Device drivers

Device drivers

Applications

e Attempts to execute privileged instructions from unprivileged
code trap and invoke a handler at next higher privilege level

* Handler can check permissions, and either allow the operation, terminate lower
privilege process, or otherwise arbitrate access

e Full virtualisation requires either:

e Hypervisor running at higher privilege than the guest operating systems —
allowing it to arbitrate access between those guests, without support from
the guests

e Or, rewriting operating system code to be aware of virtualisation, and to call
into the hypervisor to perform privileged operations — known as
paravirtualisation, where the operating systems agree to cooperate with the
hypervisor

Least privileged

Most privileged

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Hardware Virtualisation: Hypervisor Mode

e Unmodified guest operating systems running on a hypervisor

 The hypervisor is aware of the guest operating systems it’s running
e The guest operating systems don’t know that they’re being virtualised

App 1 App 2 || App 1 App 2

o] [eop2] [Ooerating System| [Operaing System]

e Traps normally privileged operations to the hypervisor

e (Cache control

e Page tables and virtual memory
e |nterrupt handlers

e Performance reduced — depends on degree of hardware support

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Hardware Virtualisation: Paravirtualisation

o Paravirtualisation — provide a virtual machine that is similar, but not
identical, to underlying hardware

e Guest operating systems aware of virtualisation

Guests are “ported” to run on the virtualised environment — modified to never
execute privileged instructions
Hypervisor provides an API:

e Cache control
e Pages tables and virtual memory
e Interrupt handlers

Guest operating systems call that APl — much as a user process calls into an
operating system kernel

Relies on cooperation between hypervisor and guest operating systems

 Needed if hardware doesn’t provide a hypervisor privilege level — but require trust in
guests (trust in the guest kernels, not in the applications that run on them)

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Hardware Virtualisation: Memory

e QOperating systems provide virtual addressing

e Each process believes it has access to the entire
address space

e Kernel configures hardware address translation tables
— mapping virtual to physical addresses, and isolating
the different processes

* Hypervisor requires additional translation

e (Guest operating systems believe they own the entire
address space

e Hypervisor maps this onto physical addresses,
isolating the guest operating systems — needs
hardware support

e “Page table virtualisation”
e Must support all devices that access memory

e Direct memory access by storage/networking devices

e Access to memory mapped hardware registers

Two-stage address translation

_LI

Hypervisor

Guest Operating System
{

Guest Operating System

Virtual “Physical” Physical
Addresses Addresses Addresses

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Hardware Virtualisation: C

VM

/Applications

T~

Host

(Virtual Machines A

I/0 Stack

e

buffer cache

I/0 scheduler

device driver

Guest 0S

y 4 Hypervisor

virtual-to-physical
translation

interpose/transform
e.g. log, encryp

I/0 scheduler
device driver

I/0 Stack

-

Virtual Hardware
emulated
disk device

/

-

\ Physical Hardware
local
disk device <

%

evice Drivers

e Similar to two-stage address translation,
Interrupts and other hardware accesses
are virtualised

e Hardware support from CPU, PCI bus
controllers, BIOS, etc.

e Example: PCI single root I/O virtualisation

o Software support for hypervisor — arbitrate
access to real hardware (e.g., only one guest
operating system can actually read the
keyboard at once)

e Some devices can be shared between
guest operating systems

o Storage devices might appear as an entire
device, but only give access to only a single
partition — by translating block addresses

 Network devices can have multiple MAC
addresses that are used to deliver packets to
particular guests

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Types of Hypervisor

e Type 1 (“native”) hypervisor:

* Hypervisor is the operating system for the
underlying hardware

e Requires its own device drivers, and has
to be ported to new hardware platforms

« Example: Xen

e Type 2 (“*hosted”) hypervisor:

e The hypervisor is an application running
on an existing operating system

e« Example: VMWare, VirtualBox

HYPER
VISOR

HARD
WARE

TYPE 1

native
(bare metal)

TYPE 2

hosted

10

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Type 1 Hypervisors

 The hypervisor is an operating system

e Controls/arbitrates access to the hardware
e Schedules the execution of guest operating
systems '{',rs'f,f
 Needs device drivers for the underlying CARD
hardware < WARE >
e« Some devices are driven by the hypervisor — TYPE 1
the hypervisor executes operations on behalf Pative
Of the gueStS (bare metal)

e For other devices, configure resources to give
an individual guest direct access to resources

e Exposes a control API

o Allows one of the guests to act as controller for
the hypervisor

e Example: “domain 0” in Xen

o Extremely efficient — basis for most cloud
hosting platforms

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Type 2 Hypervisors

 The hypervisor is a process that runs
within an existing operating system

e« Doesn’t hard privileged access to the
underlying hardware, CPU, etc.

e Cannot run unmodified guest operating
systems — since it doesn’t have privilege
to virtualise their operation

e Requires paravirtualisation

e (Guest operating systems must be modified
to call hypervisor for privileged operations

e Hypervisor itself depends on access given
by the underlying operating system

o Often requires software emulation of the
hardware — e.g., interrupt handlers, 1/O,
page tables — can be very slow

e (Good for development — not useful as
high performance or as a cloud
hosting platform

TYPE 2

hosted

12

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Management of Virtual Machines

» Type 1 hypervisors need a management interface

e Features:
e Configuring, starting, stopping, and migrating VMs
e Managing underlying hardware

 Managing network configuration

e Hyper-call APl — works like system call APl (INT 0x82 vs. INT 0x80) — that
can be called by management software

e Designed for large-scale, automated, administration — virtual machines as a
service

e Type 2 hypervisors can be configured as any other application on
the host operating system

e Designed for small-scale personal use

13

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Management of Virtual Machines

* Hypervisors allow creation of virtual machines

e Hypervisor + guest operating system + local state — virtual machine

e Allows on-demand instantiation of servers within a virtualised system

e Can be (largely) independent of underlying hardware

Configure VM with generic device drivers, reasonable amount of memory, etc.
A subset of the real hardware available in the hosting environment

VM can be instantiated on any physical system that meets requirements

Many VMs can be instantiated on a single machine — performance constraints?

User of the VM typically unaware which physical hardware used; physical hardware can
change over time

Virtual machines can be migrated between physical servers when stopped, but also while
in use if care is taken

 Enables cloud computing platforms and computing as a service

14

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Live Migration

e Possible to migrate running guest
operating systems to new system

Move VM between physical servers,
while running, without users noticing

e Live migration procedure:

Activate new VM, with matching hardware
resources

Copy contents of memory and storage —
keep track of writes after copy

Stop VM, copy any outstanding memory,
storage, and other state

Reassign network addresses to new host
Restart VM on new host

VM running normally on
Host A

Downtime
(VM Out of Service)

VM running normally on
Host B

e Performance heavily dependent on amount of
active 1/0 on VM; speed of network

Sub-second downtime, with performance impacts
for several seconds preceding is possible, with care

Stage 0: Pre-Migration
Active VM on Host A
Alternate physical host may be preselected for migration
Block devices mirrored and free resources maintained

Stage 1: Reservation '

Initialize a container on the target host

Stage 2: Iterative Pre-copy
Enable shadow paging

Copy dirty pages in successive rounds. ®
\j

Stage' 3: Stop and copy
Suspend VM on host A
Generate ARP to redirect traffic to Host B
Synchronize all remaining VM state to Host B

Stage 4: Commitment +
VM state on Host A is released

_________________ T

Stage 5: Activation
VM starts on Host B
Connects to local devices

Resumes normal operation

15

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Example: Xen

Xen and the Art of Virtualization

Paul Barham-=, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,
Alex Ho, Rolf Neugebauert, lan Pratt, Andrew Warfield

University of Cambridge Computer Laboratory
15 JJ Thomson Avenue, Cambridge, UK, CB3 OFD

{firstname.lastname}@cl.cam.ac.uk

ABSTRACT

Numerous systems have been designed which use virtualization to
subdivide the ample resources of a modern computer. Some require
specialized hardware, or cannot support commodity operating sys-
tems. Some target 100% binary compatibility at the expense of
performance. Others sacrifice security or functionality for speed.
Few offer resource isolation or performance guarantees; most pro-
vide only best-effort provisioning, risking denial of service.

This paper presents Xen, an x86 virtual machine monitor which
allows multiple commodity operating systems to share conventional
hardware in a safe and resource managed fashion, but without sac-
rificing either performance or functionality. This is achieved by
providing an idealized virtual machine abstraction to which oper-
ating systems such as Linux, BSD and Windows XP, can be ported
with minimal effort.

Our design is targeted at hosting up to 100 virtual machine in-
stances simultaneously on a modern server. The virtualization ap-
proach taken by Xen is extremely efficient: we allow operating sys-
tems such as Linux and Windows XP to be hosted simultaneously
for a negligible performance overhead — at most a few percent
compared with the unvirtualized case. We considerably outperform
competing commercial and freely available solutions in a range of
microbenchmarks and system-wide tests.

Categories and Subject Descriptors

D.4.1 [Operating Systems]: Process Management; D.4.2 [Opera-
ting Systems]: Storage Management; D.4.8 [Operating Systems]:
Performance

General Terms

Design, Measurement, Performance

Keywords
Virtual Machine Monitors, Hypervisors, Paravirtualization

fMicrosoft Research Cambridge, UK
TIntel Research Cambridge, UK

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SOSP’03, October 19-22, 2003, Bolton Landing, New York, USA.
Copyright 2003 ACM 1-58113-757-5/03/0010 ...$5.00.

S ——

1. INTRODUCTION

Modern computers are sufficiently powerful to use virtualization
to present the illusion of many smaller virtual machines (VMs),
each running a separate operating system instance. This has led to
aresurgence of interest in VM technology. In this paper we present
Xen, a high performance resource-managed virtual machine mon-
itor (VMM) which enables applications such as server consolida-
tion [42, 8], co-located hosting facilities [14], distributed web ser-
vices [43], secure computing platforms [12, 16] and application
mobility [26, 37].

Successful partitioning of a machine to support the concurrent
execution of multiple operating systems poses several challenges.
Firstly, virtual machines must be isolated from one another: it is not
acceptable for the execution of one to adversely affect the perfor-
mance of another. This is particularly true when virtual machines
are owned by mutually untrusting users. Secondly, it is necessary
to support a variety of different operating systems to accommodate
the heterogeneity of popular applications. Thirdly, the performance
overhead introduced by virtualization should be small.

Xen hosts commodity operating systems, albeit with some source
modifications. The prototype described and evaluated in this paper
can support multiple concurrent instances of our XenoLinux guest
operating system; each instance exports an application binary inter-
face identical to a non-virtualized Linux 2.4. Our port of Windows
XP to Xen is not yet complete but is capable of running simple
user-space processes. Work is also progressing in porting NetBSD.

Xen enables users to dynamically instantiate an operating sys-
tem to execute whatever they desire. In the XenoServer project [15,
35] we are deploying Xen on standard server hardware at econom-
ically strategic locations within ISPs or at Internet exchanges. We
perform admission control when starting new virtual machines and
expect each VM to pay in some fashion for the resources it requires.
We discuss our ideas and approach in this direction elsewhere [21];
this paper focuses on the VMM.

There are a number of ways to build a system to host multiple
applications and servers on a shared machine. Perhaps the simplest
is to deploy one or more hosts running a standard operating sys-
tem such as Linux or Windows, and then to allow users to install
files and start processes — protection between applications being
provided by conventional OS techniques. Experience shows that
system administration can quickly become a time-consuming task
due to complex configuration interactions between supposedly dis-
joint applications.

More importantly, such systems do not adequately support per-
formance isolation; the scheduling priority, memory demand, net-
work traffic and disk accesses of one process impact the perfor-
mance of others. This may be acceptable when there is adequate
provisioning and a closed user group (such as in the case of com-

A modern type 1 hypervisor for x86

e Supports two types of virtualisation:

e Full virtualisation — needs hardware support

* Older x86 CPUs had no way of trapping
supervisor mode instruction calls, to allow
efficient emulation by a hypervisor; modern x86
CPUs do provide this

e Paravirtualisation

* Guest operating system is ported to a new
system architecture, which looks like x86 with
problematic features adapted to ease
virtualisation

e Operating system knows it is running in a VM

* Processes running within the OS cannot tell that
virtualisation is in use

e Control operations delegated to a
privileged guest operating system

e Known as Domain0O

e Provides policy and controls the hypervisor

16

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Xen

e Guest operating systems must be ported to Xen

 The Xen hypervisor provides an API Memory Management

Segmentation

to mediate hardware access by guest ...

Cannot install fully-privileged segment descriptors and cannot overlap with the top end of the linear
address space.

Guest OS has direct read access to hardware page tables, but updates are batched and validated by
the hypervisor. A domain may be allocated discontiguous machine pages.

operating systems:

Guest OS must run at a lower privilege level than Xen.

Guest OS must register a descriptor table for exception handlers with Xen. Aside from page faults,
the handlers remain the same.

Guest OS may install a ‘fast’ handler for system calls, allowing direct calls from an application into
its guest OS and avoiding indirecting through Xen on every call.

Hardware interrupts are replaced with a lightweight event system.

Each guest OS has a timer interface and is aware of both ‘real’ and ‘virtual’ time.

orecion
e Privileged CPU instructions I;I;CH

« Memory management Tine

e Interrupt handling e ke
e Access to network, disk, etc., hardware

 Required changes to guest systems are small

e Porting guests to an API that allows efficient
virtualisation allows significant performance benefits

o Simplifies hypervisor design for x86, where the
processor architecture makes full virtualisation
expensive

 The user-space API of guest operating systems
IS unchanged

Virtual devices are elegant and simple to access. Data is transferred using asynchronous I/O rings.
An event mechanism replaces hardware interrupts for notifications.

Table 1: The paravirtualized x86 interface.

OS subsection # lines
Linux XP
Architecture-independent 78 1299
Virtual network driver 484 -
Virtual block-device driver 1070 -
Xen-specific (non-driver) 1363 3321
Total 2995 4620

(Portion of total x86 code base 1.36% 0.04%)

Table 2: The simplicity of porting commodity OSes to Xen. The
cost metric is the number of lines of reasonably commented and
formatted code which are modified or added compared with the
original x86 code base (excluding device drivers).

17

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Xen

e Xen provides mechanisms, but does not
define policy

e Virtualisation primitives are well understood
and stable

e Control mechanisms and policies evolve to
match business models

e Separation of mechanism and policy allows
these to develop at separate rates

e Interactions via a mix of hyper-calls and
message passing

e Hyper-calls allow a guest operating system to
call into the hypervisor

* [mplement the DomainO control interface
* Implement the paravirtualisation interface

 Message passing allows the hypervisor to
queue events to be processed by a guest

» Callbacks to a guest, to indicate completion of
request or receipt of asynchronous data

User
Software

User
Software

User
Software

GuestOS GuestOS GuestOS
(XenoLinux) (XenoBSD) (XenoXP)

Xeno-Aware
Device Drivers

Xeno-Aware
Device Drivers

Xeno-Aware
Device Drivers

Xeno-Aware
Device Drivers

Domain0
control

virtual virtual virtual virtual)E(
interface

x86 CPU phy mem network blockdev

R 2 2

H/W (SMP x86, phy mem, enet, SCSI/IDE)

Figure 1: The structure of a machine running the Xen hyper-
visor, hosting a number of different guest operating systems,
including Domain(running control software in a XenoLinux
environment.

18

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Further Reading

P. Barham et al, “Xen and the art of virtualization”, Proc.
ACM Symposium on Operating Systems Principles,
October 2003. DOI:10.1145/945445.945462

Trade-offs of paravirtualisation vs. full virtualisation?
What needs to be done to port an OS to Xen?

|s paravirtualisation worthwhile, when compared to
full system virtualisation?

How do DomO and device drivers work?

Xen and the Art of Virtualization

Paul Barham', Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,
Alex Ho, Rolf Neugebauer', lan Pratt, Andrew Warfield
University of Cambridge Computer Laboratory
15 JJ Thomson Avenue, Cambridge, UK, CB3 OFD
(firstname.lastname)}@cl.cam.ac.uk

ABSTRACT

Numerous systems have been designed which use virtualization to
ple resources of a modern computer. Some require

% binary compatibilty af the expense of
performance. Others sacrifice security or functionality for speed.
Few offer resource isolation or performance guaraniees; most pro-
vide only best-effort provisioning, risking denial of service.

This paper presents Xen, an x86 virtual machine monitor which

hardware in a safe and resource d fashion, but without sac-
sificing either performance or functionality. This is achieved by
providing an idealized virtual machine abstraction 1o which oper-
ating sysiems such as Linux, BSD and Windows XP, can be pored
with minimal effort

Our design is targeted at hosting up to 100 virtual machine in.
stances simultancously on a modern server. The virtualization ap

ch tak

1. INTRODUCTION

Modern computers are sufficiently powerful to use virtualization
10 present the illusion of many smaller virtual machines (VMSs).
e operating system instance. This has led o
tin VM technology. In this paper we prsent
h performance resource-managed virtual machine mon

cach running a s
Xen.
itor (VMM) which enables applications such s server consolida-
tion [42. 8, co-located hosting facilitis [14], distributed web ser
vices (431, secure computing platforms [12. 16] and application
mobilty 26, 37]

Successful partition
exceution of multiple op
Firstly,vitual machines must be isolated from one another: it i not
aceeptable for the exccution of one (0 adversely affect he perfor-
mance of another. This is particularly true when virtual machines
are owned by mutually untrusting users
10 support & variety of different operating systems (0 accommodate

e of inte

' a machine to support the concurrent
ting systems poses several challenges.

ondly, it is necessary

I taken by Xen is perating sys:
tems such as Linux and Windows XP to be hosted simultancously
for 4 negligible performance overhead — at most a few percent

gencity of popular spplications. Thirdly
overhead introduced by vitusizaton should be small
Xen Joei

pa P
competing commercial and freely available solutions in a range of

‘microbenchmarks and system-wide tests.

Categories and Subject Descriptors
DA.1 (Operating Systems}: Process Managemen: D.
ting Systems]: Storage Managements 4.5 [Operatin

General Terms
Design, Measurement, Performance

Keywords

Virtual Machine Monitors, Hypervisors, Pasvirualization

“Microsoft Re
"Intel Reses

Permission to make digital or hard copies of al or part of this work for
personal or classroom use is granted without

Tepublsh 10 post o erers of o it o, e o pecife

SOSP'03, October 1932, 2003, Bolton Landing, New York, USA.
Copyright 2003 ACM 1-S8113-757-5/03/0010 ..$5.00.

S —

modifications. The prototyp and evaluated in this paper
an support multiple concurrent instances of our XenoLinux guest
system; each in orts an application binary inter-

entical to a non-virtualized Linux 2.4, Our port of Windows.
1 is ot yet complete but is capable of running simple
-space processes. Work s also progressing in porting NetBSD.,
bles users to dynamically instantiate an operating sys-
he XenoServer project [15.

We discuss our ideas and approach in this direction elsewhere [21];
this paper focuses on the VMM,
There are & number of ways to build a system to host muliple

provided by conventional OS techniques. Experien
System administration can quickly become a time-consuming task
configuration

P
joint applications.

More importantly, such systems do not adequately support per
formance isolation; the scheduling priority, memory demand, net-
work traffic and disk accesses of one process impact the perfor
mance of others. This may be accepable when there is adequate
provisioning and a closed user group (such as in the case of com-

T—

19

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://dx.doi.org/10.1145/945445.945462

