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Lecture Outline

• What is virtualisation? 

• Full system virtualisation 
• Hypervisors – type 1 and type 2 

• Virtualising CPUs, memory, device drivers 

• Live migration 

• Example: Xen
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Virtualisation Concepts

• Enable resource sharing by decoupling execution environments 
from physical hardware 
• Full system virtualisation – run multiple operating systems on a single 

physical host; virtual machines (VMs) 

• Desirable for data centres and cloud hosting environments – computing as a 
service 

• Benefits for flexible management and security 

• Use isolation to protect services 
• Containers – virtualise resources of interest 

• Lightweight, but imperfect, virtualisation; constrains ability of a group of 
processes to access system resources 

• Enhances security within an operating system
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Full System Virtualisation

• Allow more than one operating system to 
run on the same physical hardware 
• First implemented: IBM System/360 mainframe 

– mid-1960s 

• Popular current implementations: Xen, 
VMWare, QEMU, VirtualBox 

• Introduces hypervisor abstraction: 
• The hypervisor is a process that manages the 

virtualisation, and emulates the hardware 
• Processors 

• Memory 

• Device drivers 

• The guest operating systems run as processes 
on the hypervisor 

• The hypervisor API presents a virtual machine 
abstraction – each operating system thinks it’s 
running on real hardware

4

(source: Wikipedia) IBM System/360
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Hardware Virtualisation: CPU

• Processors distinguish privileged and unprivileged operations 
• Known as protection rings or privilege levels 

• ARM7 CPUs have “application”, “operating system”, and  
“hypervisor” privileges 

• x86 CPUs have four levels of numbered protection rings 

• Instructions that control I/O, interrupt handlers, virtual memory, 
memory protection, etc., tend to be privileged  

• Attempts to execute privileged instructions from unprivileged  
code trap and invoke a handler at next higher privilege level 
• Handler can check permissions, and either allow the operation, terminate lower 

privilege process, or otherwise arbitrate access  

• Full virtualisation requires either: 
• Hypervisor running at higher privilege than the guest operating systems – 

allowing it to arbitrate access between those guests, without support from 
the guests 

• Or, rewriting operating system code to be aware of virtualisation, and to call 
into the hypervisor to perform privileged operations – known as 
paravirtualisation, where the operating systems agree to cooperate with the 
hypervisor

5

(Wikipedia)

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/


Colin Perkins | https://csperkins.org/ | Copyright © 2017

Hardware Virtualisation: Hypervisor Mode

• Unmodified guest operating systems running on a hypervisor 
• The hypervisor is aware of the guest operating systems it’s running 

• The guest operating systems don’t know that they’re being virtualised 

• Traps normally privileged operations to the hypervisor 
• Cache control 

• Page tables and virtual memory 

• Interrupt handlers 

• … 

• Performance reduced – depends on degree of hardware support

6

App 1 App 2

Operating System

Hardware

App 1 App 2

Operating System

App 1 App 2

Operating System

Hypervisor

Hardware

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/


Colin Perkins | https://csperkins.org/ | Copyright © 2017

Hardware Virtualisation: Paravirtualisation

• Paravirtualisation – provide a virtual machine that is similar, but not 
identical, to underlying hardware 

• Guest operating systems aware of virtualisation 
• Guests are “ported” to run on the virtualised environment – modified to never 

execute privileged instructions 

• Hypervisor provides an API: 
• Cache control 

• Pages tables and virtual memory 

• Interrupt handlers 

• … 

• Guest operating systems call that API – much as a user process calls into an 
operating system kernel 

• Relies on cooperation between hypervisor and guest operating systems 
• Needed if hardware doesn’t provide a hypervisor privilege level – but require trust in 

guests (trust in the guest kernels, not in the applications that run on them)
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Hardware Virtualisation: Memory

• Operating systems provide virtual addressing 
• Each process believes it has access to the entire 

address space 

• Kernel configures hardware address translation tables 
– mapping virtual to physical addresses, and isolating 
the different processes 

• Hypervisor requires additional translation 
• Guest operating systems believe they own the entire 

address space 

• Hypervisor maps this onto physical addresses, 
isolating the guest operating systems – needs 
hardware support 

• “Page table virtualisation” 

• Must support all devices that access memory 
• Direct memory access by storage/networking devices 

• Access to memory mapped hardware registers
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Hardware Virtualisation: Device Drivers

• Similar to two-stage address translation, 
interrupts and other hardware accesses 
are virtualised 
• Hardware support from CPU, PCI bus 

controllers, BIOS, etc. 

• Example: PCI single root I/O virtualisation  

• Software support for hypervisor – arbitrate 
access to real hardware (e.g., only one guest 
operating system can actually read the 
keyboard at once) 

• Some devices can be shared between 
guest operating systems 
• Storage devices might appear as an entire 

device, but only give access to only a single 
partition – by translating block addresses 

• Network devices can have multiple MAC 
addresses that are used to deliver packets to 
particular guests
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to move a running VM between physi-
cal machines, known as live migra-
tion. In both of these applications, ac-
tive logical devices must be decoupled 
from physical devices and recoupled 
when the VM resumes after being 
saved or moved. 

This virtualization layer may also 
change mappings to physical devices, 
even when the VM itself does not move. 
For example, by changing mappings 
while copying storage contents, a VM’s 
virtual disks can be migrated transpar-
ently between network storage units, 
even while remaining in active use by 
the VM. The same capability can be 
used to improve availability or balance 
load across different I/O channels. For 
example, in a storage system with mul-
tiple paths between the machines and 
storage, the virtualization layer can 
rebind mappings to mask failures or 
avoid delays that might occur because 
of contention on paths. 

I/O virtualization provides a foot-
hold for many innovative and ben-
eficial enhancements of the logical 
I/O devices. The ability to interpose 
on the I/O stream in and out of a VM 
has been widely exploited in both re-
search papers and commercial virtu-
alization systems. 

One useful capability enabled by I/O 
virtualization is device aggregation, 
where multiple physical devices can be 
combined into a single more capable 
logical device that is exported to the 
VM. Examples include combining mul-

tiple disk storage devices exported as a 
single larger disk, and network chan-
nel bonding where multiple network 
interfaces can be combined to appear 
as a single faster network interface.  

New features can be added to exist-
ing systems by interposing and trans-
forming virtual I/O requests, transpar-
ently enhancing unmodified software 
with new capabilities. For example, a 
disk write can be transformed into rep-
licated writes to multiple disks, so that 
the system can tolerate disk-device fail-
ures. Similarly, by logging and tracking 
the changes made to a virtual disk, the 
virtualization layer can offer a time-
travel feature, making it possible to 
move a VM’s file system backward to an 
earlier point in time. This functionality 
is a key ingredient of the snapshot and 
undo features found in many desktop 
virtualization systems. 

Many I/O virtualization enhance-
ments are designed to improve system 
security. A simple example is running 
an encryption function over the I/O to 
and from a disk to implement trans-
parent disk encryption. Interposing 
on network traffic allows virtualization 
layers to implement advanced net-
working security, such as firewalls and 
intrusion-detection systems employ-
ing deep packet inspection.

Challenges
While virtualization offers many ben-
efits, it also introduces significant 
challenges. One is achieving good I/O 

performance despite the potential 
overhead associated with flexible in-
direction and interposition. Complex 
resource-management issues such as 
scheduling and prioritization are intro-
duced by multiplexing physical devices 
across multiple VMs, further impact-
ing performance. Another challenge is 
defining appropriate semantics for vir-
tual devices and interfaces, especially 
when faced with complex physical I/O 
devices or system-level optimizations.

In many systems, a nontrivial per-
formance penalty is associated with in-
direction. The same can be true for vir-
tualized I/O, since I/O operations must 
conceptually traverse two separate I/O 
stacks: one in the guest managing the 
virtual hardware; and one in the hyper-
visor managing physical hardware. The 
longer I/O path affects both latency 
and throughput, and imposes addi-
tional CPU load. 

Indeed, I/O-intensive workloads on 
some early virtualization systems suf-
fered a virtualization penalty larger 
than a factor of two. Since then, further 
research, optimizations, and hardware 
acceleration have reduced this penalty 
into the noise for an impressive set of 
demanding production workloads. 
Somewhat counterintuitively, virtual-
ized systems have even outperformed 
native systems on the same physical 
hardware, overcoming native scaling 
limitations by instead running several 
smaller VM instances in a scale-out 
configuration.

Figure 1 depicts the flow of an I/O 
request in a virtualized system. When 
an application running within a VM is-
sues an I/O request, typically by making 
a system call, it is initially processed 
by the I/O stack in the guest operating 
system, which is also running within 
the VM. A device driver in the guest is-
sues the request to a virtual I/O device, 
which the hypervisor then intercepts. 
The hypervisor schedules requests 
from multiple VMs onto an underlying 
physical I/O device, usually via another 
device driver managed by the hypervi-
sor or a privileged VM with direct ac-
cess to physical hardware. 

When a physical device finishes 
processing an I/O request, the two I/O 
stacks must be traversed again, but in 
the reverse order. The actual device 
posts a physical completion interrupt, 
which is handled by the hypervisor. The 

Figure 1. An I/O request issued by an application is processed first by the guest operating 
system I/O stack running within the VM, and then by the hypervisor I/O stack managing 
physical hardware.
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Types of Hypervisor

• Type 1 (“native”) hypervisor: 
• Hypervisor is the operating system for the 

underlying hardware 

• Requires its own device drivers, and has 
to be ported to new hardware platforms 

• Example: Xen 

• Type 2 (“hosted”) hypervisor: 
• The hypervisor is an application running 

on an existing operating system 

• Example: VMWare, VirtualBox
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Type 1 Hypervisors

• The hypervisor is an operating system 
• Controls/arbitrates access to the hardware 

• Schedules the execution of guest operating 
systems 

• Needs device drivers for the underlying 
hardware 
• Some devices are driven by the hypervisor – 

the hypervisor executes operations on behalf 
of the guests  

• For other devices, configure resources to give 
an individual guest direct access to resources 

• Exposes a control API 
• Allows one of the guests to act as controller for 

the hypervisor 

• Example: “domain 0” in Xen 

• Extremely efficient – basis for most cloud 
hosting platforms
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Type 2 Hypervisors

• The hypervisor is a process that runs 
within an existing operating system 
• Doesn’t hard privileged access to the 

underlying hardware, CPU, etc. 

• Cannot run unmodified guest operating 
systems – since it doesn’t have privilege  
to virtualise their operation 

• Requires paravirtualisation 
• Guest operating systems must be modified 

to call hypervisor for privileged operations  

• Hypervisor itself depends on access given 
by the underlying operating system 

• Often requires software emulation of the 
hardware – e.g., interrupt handlers, I/O, 
page tables – can be very slow 

• Good for development – not useful as 
high performance or as a cloud 
hosting platform
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Management of Virtual Machines

• Type 1 hypervisors need a management interface 
• Features: 

• Configuring, starting, stopping, and migrating VMs 

• Managing underlying hardware 

• Managing network configuration 

• Hyper-call API – works like system call API (INT 0x82 vs. INT 0x80) – that 
can be called by management software 

• Designed for large-scale, automated, administration – virtual machines as a 
service 

• Type 2 hypervisors can be configured as any other application on 
the host operating system 
• Designed for small-scale personal use
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Management of Virtual Machines

• Hypervisors allow creation of virtual machines 
• Hypervisor + guest operating system + local state → virtual machine 

• Allows on-demand instantiation of servers within a virtualised system 

• Can be (largely) independent of underlying hardware 
• Configure VM with generic device drivers, reasonable amount of memory, etc.  

• A subset of the real hardware available in the hosting environment 

• VM can be instantiated on any physical system that meets requirements  

• Many VMs can be instantiated on a single machine – performance constraints? 

• User of the VM typically unaware which physical hardware used; physical hardware can 
change over time 

• Virtual machines can be migrated between physical servers when stopped, but also while 
in use if care is taken 

• Enables cloud computing platforms and computing as a service
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Live Migration

• Possible to migrate running guest  
operating systems to new system 
• Move VM between physical servers,  

while running, without users noticing 

• Live migration procedure: 
• Activate new VM, with matching hardware 

resources 

• Copy contents of memory and storage –  
keep track of writes after copy 

• Stop VM, copy any outstanding memory,  
storage, and other state 

• Reassign network addresses to new host 

• Restart VM on new host 

• Performance heavily dependent on amount of 
active I/O on VM; speed of network 
• Sub-second downtime, with performance impacts 

for several seconds preceding is possible, with care

15

For network resources, we want a migrated OS to maintain
all open network connections without relying on forward-
ing mechanisms on the original host (which may be shut
down following migration), or on support from mobility
or redirection mechanisms that are not already present (as
in [6]). A migrating VM will include all protocol state (e.g.
TCP PCBs), and will carry its IP address with it.

To address these requirements we observed that in a clus-
ter environment, the network interfaces of the source and
destination machines typically exist on a single switched
LAN. Our solution for managing migration with respect to
network in this environment is to generate an unsolicited
ARP reply from the migrated host, advertising that the IP
has moved to a new location. This will reconfigure peers
to send packets to the new physical address, and while a
very small number of in-flight packets may be lost, the mi-
grated domain will be able to continue using open connec-
tions with almost no observable interference.

Some routers are configured not to accept broadcast ARP
replies (in order to prevent IP spoofing), so an unsolicited
ARP may not work in all scenarios. If the operating system
is aware of the migration, it can opt to send directed replies
only to interfaces listed in its own ARP cache, to remove
the need for a broadcast. Alternatively, on a switched net-
work, the migrating OS can keep its original Ethernet MAC
address, relying on the network switch to detect its move to
a new port1.

In the cluster, the migration of storage may be similarly ad-
dressed: Most modern data centers consolidate their stor-
age requirements using a network-attached storage (NAS)
device, in preference to using local disks in individual
servers. NAS has many advantages in this environment, in-
cluding simple centralised administration, widespread ven-
dor support, and reliance on fewer spindles leading to a
reduced failure rate. A further advantage for migration is
that it obviates the need to migrate disk storage, as the NAS
is uniformly accessible from all host machines in the clus-
ter. We do not address the problem of migrating local-disk
storage in this paper, although we suggest some possible
strategies as part of our discussion of future work.

3.3 Design Overview

The logical steps that we execute when migrating an OS are
summarized in Figure 1. We take a conservative approach
to the management of migration with regard to safety and
failure handling. Although the consequences of hardware
failures can be severe, our basic principle is that safe mi-
gration should at no time leave a virtual OS more exposed

1Note that on most Ethernet controllers, hardware MAC filtering will
have to be disabled if multiple addresses are in use (though some cards
support filtering of multiple addresses in hardware) and so this technique
is only practical for switched networks.

Stage 0: Pre-Migration
 Active VM on Host A
 Alternate physical host may be preselected for migration
 Block devices mirrored and free resources maintained 

Stage 4: Commitment
 VM state on Host A is released

Stage 5: Activation
 VM starts on Host B
 Connects to local devices
 Resumes normal operation 

Stage 3: Stop and copy
 Suspend VM on host A
 Generate ARP to redirect traffic to Host B
 Synchronize all remaining VM state to Host B 

Stage 2: Iterative Pre-copy
 Enable shadow paging
 Copy dirty pages in successive rounds.

Stage 1: Reservation
 Initialize a container on the target host 

Downtime
(VM Out of Service)

VM running normally on
Host A

VM running normally on
Host B

Overhead due to copying

Figure 1: Migration timeline

to system failure than when it is running on the original sin-
gle host. To achieve this, we view the migration process as
a transactional interaction between the two hosts involved:

Stage 0: Pre-Migration We begin with an active VM on
physical host A. To speed any future migration, a tar-
get host may be preselected where the resources re-
quired to receive migration will be guaranteed.

Stage 1: Reservation A request is issued to migrate an OS
from host A to host B. We initially confirm that the
necessary resources are available on B and reserve a
VM container of that size. Failure to secure resources
here means that the VM simply continues to run on A
unaffected.

Stage 2: Iterative Pre-Copy During the first iteration, all
pages are transferred from A to B. Subsequent itera-
tions copy only those pages dirtied during the previous
transfer phase.

Stage 3: Stop-and-Copy We suspend the running OS in-
stance at A and redirect its network traffic to B. As
described earlier, CPU state and any remaining incon-
sistent memory pages are then transferred. At the end
of this stage there is a consistent suspended copy of
the VM at both A and B. The copy at A is still con-
sidered to be primary and is resumed in case of failure.

Stage 4: Commitment Host B indicates to A that it has
successfully received a consistent OS image. Host A
acknowledges this message as commitment of the mi-
gration transaction: host A may now discard the orig-
inal VM, and host B becomes the primary host.

Stage 5: Activation The migrated VM on B is now ac-
tivated. Post-migration code runs to reattach device
drivers to the new machine and advertise moved IP
addresses.

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation USENIX Association276

Source: Clark et al., “Live Migration of Virtual Machines”, Proc. USENIX NSDI, 2005.
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Example: Xen

• A modern type 1 hypervisor for x86 

• Supports two types of virtualisation: 
• Full virtualisation – needs hardware support 

• Older x86 CPUs had no way of trapping 
supervisor mode instruction calls, to allow 
efficient emulation by a hypervisor; modern x86 
CPUs do provide this 

• Paravirtualisation 
• Guest operating system is ported to a new 

system architecture, which looks like x86 with 
problematic features adapted to ease 
virtualisation 

• Operating system knows it is running in a VM 

• Processes running within the OS cannot tell that 
virtualisation is in use 

• Control operations delegated to a 
privileged guest operating system 
• Known as Domain0 

• Provides policy and controls the hypervisor
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ABSTRACT
Numerous systems have been designed which use virtualization to
subdivide the ample resources of a modern computer. Some require
specialized hardware, or cannot support commodity operating sys-
tems. Some target 100% binary compatibility at the expense of
performance. Others sacrifice security or functionality for speed.
Few offer resource isolation or performance guarantees; most pro-
vide only best-effort provisioning, risking denial of service.

This paper presents Xen, an x86 virtual machine monitor which
allows multiple commodity operating systems to share conventional
hardware in a safe and resource managed fashion, but without sac-
rificing either performance or functionality. This is achieved by
providing an idealized virtual machine abstraction to which oper-
ating systems such as Linux, BSD and Windows XP, can be ported
with minimal effort.

Our design is targeted at hosting up to 100 virtual machine in-
stances simultaneously on a modern server. The virtualization ap-
proach taken by Xen is extremely efficient: we allow operating sys-
tems such as Linux and Windows XP to be hosted simultaneously
for a negligible performance overhead — at most a few percent
compared with the unvirtualized case. We considerably outperform
competing commercial and freely available solutions in a range of
microbenchmarks and system-wide tests.
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1. INTRODUCTION
Modern computers are sufficiently powerful to use virtualization

to present the illusion of many smaller virtual machines (VMs),
each running a separate operating system instance. This has led to
a resurgence of interest in VM technology. In this paper we present
Xen, a high performance resource-managed virtual machine mon-
itor (VMM) which enables applications such as server consolida-
tion [42, 8], co-located hosting facilities [14], distributed web ser-
vices [43], secure computing platforms [12, 16] and application
mobility [26, 37].

Successful partitioning of a machine to support the concurrent
execution of multiple operating systems poses several challenges.
Firstly, virtual machines must be isolated from one another: it is not
acceptable for the execution of one to adversely affect the perfor-
mance of another. This is particularly true when virtual machines
are owned by mutually untrusting users. Secondly, it is necessary
to support a variety of different operating systems to accommodate
the heterogeneity of popular applications. Thirdly, the performance
overhead introduced by virtualization should be small.

Xen hosts commodity operating systems, albeit with some source
modifications. The prototype described and evaluated in this paper
can support multiple concurrent instances of our XenoLinux guest
operating system; each instance exports an application binary inter-
face identical to a non-virtualized Linux 2.4. Our port of Windows
XP to Xen is not yet complete but is capable of running simple
user-space processes. Work is also progressing in porting NetBSD.

Xen enables users to dynamically instantiate an operating sys-
tem to execute whatever they desire. In the XenoServer project [15,
35] we are deploying Xen on standard server hardware at econom-
ically strategic locations within ISPs or at Internet exchanges. We
perform admission control when starting new virtual machines and
expect each VM to pay in some fashion for the resources it requires.
We discuss our ideas and approach in this direction elsewhere [21];
this paper focuses on the VMM.

There are a number of ways to build a system to host multiple
applications and servers on a shared machine. Perhaps the simplest
is to deploy one or more hosts running a standard operating sys-
tem such as Linux or Windows, and then to allow users to install
files and start processes — protection between applications being
provided by conventional OS techniques. Experience shows that
system administration can quickly become a time-consuming task
due to complex configuration interactions between supposedly dis-
joint applications.

More importantly, such systems do not adequately support per-
formance isolation; the scheduling priority, memory demand, net-
work traffic and disk accesses of one process impact the perfor-
mance of others. This may be acceptable when there is adequate
provisioning and a closed user group (such as in the case of com-
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Xen

• Guest operating systems must be ported to Xen 

• The Xen hypervisor provides an API  
to mediate hardware access by guest  
operating systems: 
• Privileged CPU instructions 

• Memory management 

• Interrupt handling 

• Access to network, disk, etc., hardware 

• Required changes to guest systems are small 
• Porting guests to an API that allows efficient 

virtualisation allows significant performance benefits 

• Simplifies hypervisor design for x86, where the 
processor architecture makes full virtualisation 
expensive 

• The user-space API of guest operating systems 
is unchanged
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Memory Management
Segmentation Cannot install fully-privileged segment descriptors and cannot overlap with the top end of the linear

address space.
Paging Guest OS has direct read access to hardware page tables, but updates are batched and validated by

the hypervisor. A domain may be allocated discontiguous machine pages.
CPU
Protection Guest OS must run at a lower privilege level than Xen.
Exceptions Guest OS must register a descriptor table for exception handlers with Xen. Aside from page faults,

the handlers remain the same.
System Calls Guest OS may install a ‘fast’ handler for system calls, allowing direct calls from an application into

its guest OS and avoiding indirecting through Xen on every call.
Interrupts Hardware interrupts are replaced with a lightweight event system.
Time Each guest OS has a timer interface and is aware of both ‘real’ and ‘virtual’ time.
Device I/O
Network, Disk, etc. Virtual devices are elegant and simple to access. Data is transferred using asynchronous I/O rings.

An event mechanism replaces hardware interrupts for notifications.

Table 1: The paravirtualized x86 interface.

VMM is contrary to our goal of performance isolation: malicious
virtual machines can encourage thrashing behaviour, unfairly de-
priving others of CPU time and disk bandwidth. In Xen we expect
each guest OS to perform its own paging using its own guaran-
teed memory reservation and disk allocation (an idea previously
exploited by self-paging [20]).

Finally, Denali virtualizes the ‘namespaces’ of all machine re-
sources, taking the view that no VM can access the resource alloca-
tions of another VM if it cannot name them (for example, VMs have
no knowledge of hardware addresses, only the virtual addresses
created for them by Denali). In contrast, we believe that secure ac-
cess control within the hypervisor is sufficient to ensure protection;
furthermore, as discussed previously, there are strong correctness
and performance arguments for making physical resources directly
visible to guest OSes.

In the following section we describe the virtual machine abstrac-
tion exported by Xen and discuss how a guest OS must be modified
to conform to this. Note that in this paper we reserve the term guest
operating system to refer to one of the OSes that Xen can host and
we use the term domain to refer to a running virtual machine within
which a guest OS executes; the distinction is analogous to that be-
tween a program and a process in a conventional system. We call
Xen itself the hypervisor since it operates at a higher privilege level
than the supervisor code of the guest operating systems that it hosts.

2.1 The Virtual Machine Interface
Table 1 presents an overview of the paravirtualized x86 interface,

factored into three broad aspects of the system: memory manage-
ment, the CPU, and device I/O. In the following we address each
machine subsystem in turn, and discuss how each is presented in
our paravirtualized architecture. Note that although certain parts
of our implementation, such as memory management, are specific
to the x86, many aspects (such as our virtual CPU and I/O devices)
can be readily applied to other machine architectures. Furthermore,
x86 represents a worst case in the areas where it differs significantly
from RISC-style processors — for example, efficiently virtualizing
hardware page tables is more difficult than virtualizing a software-
managed TLB.

2.1.1 Memory management
Virtualizing memory is undoubtedly the most difficult part of

paravirtualizing an architecture, both in terms of the mechanisms
required in the hypervisor and modifications required to port each

guest OS. The task is easier if the architecture provides a software-
managed TLB as these can be efficiently virtualized in a simple
manner [13]. A tagged TLB is another useful feature supported
by most server-class RISC architectures, including Alpha, MIPS
and SPARC. Associating an address-space identifier tag with each
TLB entry allows the hypervisor and each guest OS to efficiently
coexist in separate address spaces because there is no need to flush
the entire TLB when transferring execution.

Unfortunately, x86 does not have a software-managed TLB; in-
stead TLB misses are serviced automatically by the processor by
walking the page table structure in hardware. Thus to achieve the
best possible performance, all valid page translations for the current
address space should be present in the hardware-accessible page
table. Moreover, because the TLB is not tagged, address space
switches typically require a complete TLB flush. Given these limi-
tations, we made two decisions: (i) guest OSes are responsible for
allocating and managing the hardware page tables, with minimal
involvement from Xen to ensure safety and isolation; and (ii) Xen
exists in a 64MB section at the top of every address space, thus
avoiding a TLB flush when entering and leaving the hypervisor.

Each time a guest OS requires a new page table, perhaps be-
cause a new process is being created, it allocates and initializes a
page from its own memory reservation and registers it with Xen.
At this point the OS must relinquish direct write privileges to the
page-table memory: all subsequent updates must be validated by
Xen. This restricts updates in a number of ways, including only
allowing an OS to map pages that it owns, and disallowing writable
mappings of page tables. Guest OSes may batch update requests to
amortize the overhead of entering the hypervisor. The top 64MB
region of each address space, which is reserved for Xen, is not ac-
cessible or remappable by guest OSes. This address region is not
used by any of the common x86 ABIs however, so this restriction
does not break application compatibility.

Segmentation is virtualized in a similar way, by validating up-
dates to hardware segment descriptor tables. The only restrictions
on x86 segment descriptors are: (i) they must have lower privi-
lege than Xen, and (ii) they may not allow any access to the Xen-
reserved portion of the address space.

2.1.2 CPU
Virtualizing the CPU has several implications for guest OSes.

Principally, the insertion of a hypervisor below the operating sys-
tem violates the usual assumption that the OS is the most privileged

entity in the system. In order to protect the hypervisor from OS
misbehavior (and domains from one another) guest OSes must be
modified to run at a lower privilege level.

Many processor architectures only provide two privilege levels.
In these cases the guest OS would share the lower privilege level
with applications. The guest OS would then protect itself by run-
ning in a separate address space from its applications, and indirectly
pass control to and from applications via the hypervisor to set the
virtual privilege level and change the current address space. Again,
if the processor’s TLB supports address-space tags then expensive
TLB flushes can be avoided.

Efficient virtualizion of privilege levels is possible on x86 be-
cause it supports four distinct privilege levels in hardware. The x86
privilege levels are generally described as rings, and are numbered
from zero (most privileged) to three (least privileged). OS code
typically executes in ring 0 because no other ring can execute priv-
ileged instructions, while ring 3 is generally used for application
code. To our knowledge, rings 1 and 2 have not been used by any
well-known x86 OS since OS/2. Any OS which follows this com-
mon arrangement can be ported to Xen by modifying it to execute
in ring 1. This prevents the guest OS from directly executing priv-
ileged instructions, yet it remains safely isolated from applications
running in ring 3.

Privileged instructions are paravirtualized by requiring them to
be validated and executed within Xen— this applies to operations
such as installing a new page table, or yielding the processor when
idle (rather than attempting to hlt it). Any guest OS attempt to
directly execute a privileged instruction is failed by the processor,
either silently or by taking a fault, since only Xen executes at a
sufficiently privileged level.

Exceptions, including memory faults and software traps, are vir-
tualized on x86 very straightforwardly. A table describing the han-
dler for each type of exception is registered with Xen for valida-
tion. The handlers specified in this table are generally identical
to those for real x86 hardware; this is possible because the ex-
ception stack frames are unmodified in our paravirtualized archi-
tecture. The sole modification is to the page fault handler, which
would normally read the faulting address from a privileged proces-
sor register (CR2); since this is not possible, we write it into an
extended stack frame2. When an exception occurs while executing
outside ring 0, Xen’s handler creates a copy of the exception stack
frame on the guest OS stack and returns control to the appropriate
registered handler.

Typically only two types of exception occur frequently enough to
affect system performance: system calls (which are usually imple-
mented via a software exception), and page faults. We improve the
performance of system calls by allowing each guest OS to register
a ‘fast’ exception handler which is accessed directly by the proces-
sor without indirecting via ring 0; this handler is validated before
installing it in the hardware exception table. Unfortunately it is not
possible to apply the same technique to the page fault handler be-
cause only code executing in ring 0 can read the faulting address
from register CR2; page faults must therefore always be delivered
via Xen so that this register value can be saved for access in ring 1.

Safety is ensured by validating exception handlers when they are
presented to Xen. The only required check is that the handler’s code
segment does not specify execution in ring 0. Since no guest OS
can create such a segment, it suffices to compare the specified seg-
ment selector to a small number of static values which are reserved
by Xen. Apart from this, any other handler problems are fixed up
during exception propagation — for example, if the handler’s code
2In hindsight, writing the value into a pre-agreed shared memory location
rather than modifying the stack frame would have simplified the XP port.

OS subsection # lines
Linux XP

Architecture-independent 78 1299
Virtual network driver 484 –
Virtual block-device driver 1070 –
Xen-specific (non-driver) 1363 3321
Total 2995 4620

(Portion of total x86 code base 1.36% 0.04%)

Table 2: The simplicity of porting commodity OSes to Xen. The
cost metric is the number of lines of reasonably commented and
formatted code which are modified or added compared with the
original x86 code base (excluding device drivers).

segment is not present or if the handler is not paged into mem-
ory then an appropriate fault will be taken when Xen executes the
iret instruction which returns to the handler. Xen detects these
“double faults” by checking the faulting program counter value: if
the address resides within the exception-virtualizing code then the
offending guest OS is terminated.

Note that this “lazy” checking is safe even for the direct system-
call handler: access faults will occur when the CPU attempts to
directly jump to the guest OS handler. In this case the faulting
address will be outside Xen (since Xen will never execute a guest
OS system call) and so the fault is virtualized in the normal way.
If propagation of the fault causes a further “double fault” then the
guest OS is terminated as described above.

2.1.3 Device I/O
Rather than emulating existing hardware devices, as is typically

done in fully-virtualized environments, Xen exposes a set of clean
and simple device abstractions. This allows us to design an inter-
face that is both efficient and satisfies our requirements for protec-
tion and isolation. To this end, I/O data is transferred to and from
each domain via Xen, using shared-memory, asynchronous buffer-
descriptor rings. These provide a high-performance communica-
tion mechanism for passing buffer information vertically through
the system, while allowing Xen to efficiently perform validation
checks (for example, checking that buffers are contained within a
domain’s memory reservation).

Similar to hardware interrupts, Xen supports a lightweight event-
delivery mechanism which is used for sending asynchronous noti-
fications to a domain. These notifications are made by updating a
bitmap of pending event types and, optionally, by calling an event
handler specified by the guest OS. These callbacks can be ‘held off’
at the discretion of the guest OS — to avoid extra costs incurred by
frequent wake-up notifications, for example.

2.2 The Cost of Porting an OS to Xen
Table 2 demonstrates the cost, in lines of code, of porting com-

modity operating systems to Xen’s paravirtualized x86 environ-
ment. Note that our NetBSD port is at a very early stage, and hence
we report no figures here. The XP port is more advanced, but still in
progress; it can execute a number of user-space applications from
a RAM disk, but it currently lacks any virtual I/O drivers. For this
reason, figures for XP’s virtual device drivers are not presented.
However, as with Linux, we expect these drivers to be small and
simple due to the idealized hardware abstraction presented by Xen.

Windows XP required a surprising number of modifications to
its architecture independent OS code because it uses a variety of
structures and unions for accessing page-table entries (PTEs). Each
page-table access had to be separately modified, although some of
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Xen

• Xen provides mechanisms, but does not 
define policy 
• Virtualisation primitives are well understood 

and stable 

• Control mechanisms and policies evolve to 
match business models 

• Separation of mechanism and policy allows 
these to develop at separate rates 

• Interactions via a mix of hyper-calls and 
message passing 
• Hyper-calls allow a guest operating system to 

call into the hypervisor 
• Implement the Domain0 control interface 

• Implement the paravirtualisation interface 

• Message passing allows the hypervisor to 
queue events to be processed by a guest 
• Callbacks to a guest, to indicate completion of 

request or receipt of asynchronous data
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Figure 1: The structure of a machine running the Xen hyper-
visor, hosting a number of different guest operating systems,
including Domain0 running control software in a XenoLinux
environment.

this process was automated with scripts. In contrast, Linux needed
far fewer modifications to its generic memory system as it uses pre-
processor macros to access PTEs — the macro definitions provide
a convenient place to add the translation and hypervisor calls re-
quired by paravirtualization.

In both OSes, the architecture-specific sections are effectively
a port of the x86 code to our paravirtualized architecture. This
involved rewriting routines which used privileged instructions, and
removing a large amount of low-level system initialization code.
Again, more changes were required in Windows XP, mainly due
to the presence of legacy 16-bit emulation code and the need for
a somewhat different boot-loading mechanism. Note that the x86-
specific code base in XP is substantially larger than in Linux and
hence a larger porting effort should be expected.

2.3 Control and Management
Throughout the design and implementation of Xen, a goal has

been to separate policy from mechanism wherever possible. Al-
though the hypervisor must be involved in data-path aspects (for
example, scheduling the CPU between domains, filtering network
packets before transmission, or enforcing access control when read-
ing data blocks), there is no need for it to be involved in, or even
aware of, higher level issues such as how the CPU is to be shared,
or which kinds of packet each domain may transmit.

The resulting architecture is one in which the hypervisor itself
provides only basic control operations. These are exported through
an interface accessible from authorized domains; potentially com-
plex policy decisions, such as admission control, are best performed
by management software running over a guest OS rather than in
privileged hypervisor code.

The overall system structure is illustrated in Figure 1. Note that
a domain is created at boot time which is permitted to use the con-
trol interface. This initial domain, termed Domain0, is responsible
for hosting the application-level management software. The con-
trol interface provides the ability to create and terminate other do-
mains and to control their associated scheduling parameters, phys-
ical memory allocations and the access they are given to the ma-
chine’s physical disks and network devices.

In addition to processor and memory resources, the control inter-
face supports the creation and deletion of virtual network interfaces
(VIFs) and block devices (VBDs). These virtual I/O devices have
associated access-control information which determines which do-
mains can access them, and with what restrictions (for example, a

read-only VBD may be created, or a VIF may filter IP packets to
prevent source-address spoofing).

This control interface, together with profiling statistics on the
current state of the system, is exported to a suite of application-
level management software running in Domain0. This complement
of administrative tools allows convenient management of the entire
server: current tools can create and destroy domains, set network
filters and routing rules, monitor per-domain network activity at
packet and flow granularity, and create and delete virtual network
interfaces and virtual block devices. We anticipate the development
of higher-level tools to further automate the application of admin-
istrative policy.

3. DETAILED DESIGN
In this section we introduce the design of the major subsystems

that make up a Xen-based server. In each case we present both
Xen and guest OS functionality for clarity of exposition. The cur-
rent discussion of guest OSes focuses on XenoLinux as this is the
most mature; nonetheless our ongoing porting of Windows XP and
NetBSD gives us confidence that Xen is guest OS agnostic.

3.1 Control Transfer: Hypercalls and Events
Two mechanisms exist for control interactions between Xen and

an overlying domain: synchronous calls from a domain to Xen may
be made using a hypercall, while notifications are delivered to do-
mains from Xen using an asynchronous event mechanism.

The hypercall interface allows domains to perform a synchronous
software trap into the hypervisor to perform a privileged operation,
analogous to the use of system calls in conventional operating sys-
tems. An example use of a hypercall is to request a set of page-
table updates, in which Xen validates and applies a list of updates,
returning control to the calling domain when this is completed.

Communication from Xen to a domain is provided through an
asynchronous event mechanism, which replaces the usual delivery
mechanisms for device interrupts and allows lightweight notifica-
tion of important events such as domain-termination requests. Akin
to traditional Unix signals, there are only a small number of events,
each acting to flag a particular type of occurrence. For instance,
events are used to indicate that new data has been received over the
network, or that a virtual disk request has completed.

Pending events are stored in a per-domain bitmask which is up-
dated by Xen before invoking an event-callback handler specified
by the guest OS. The callback handler is responsible for resetting
the set of pending events, and responding to the notifications in an
appropriate manner. A domain may explicitly defer event handling
by setting a Xen-readable software flag: this is analogous to dis-
abling interrupts on a real processor.

3.2 Data Transfer: I/O Rings
The presence of a hypervisor means there is an additional pro-

tection domain between guest OSes and I/O devices, so it is crucial
that a data transfer mechanism be provided that allows data to move
vertically through the system with as little overhead as possible.

Two main factors have shaped the design of our I/O-transfer
mechanism: resource management and event notification. For re-
source accountability, we attempt to minimize the work required to
demultiplex data to a specific domain when an interrupt is received
from a device — the overhead of managing buffers is carried out
later where computation may be accounted to the appropriate do-
main. Similarly, memory committed to device I/O is provided by
the relevant domains wherever possible to prevent the crosstalk in-
herent in shared buffer pools; I/O buffers are protected during data
transfer by pinning the underlying page frames within Xen.
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Further Reading

• P. Barham et al, “Xen and the art of virtualization”, Proc. 
ACM Symposium on Operating Systems Principles, 
October 2003. DOI:10.1145/945445.945462 

• Trade-offs of paravirtualisation vs. full virtualisation? 

• What needs to be done to port an OS to Xen? 

• Is paravirtualisation worthwhile, when compared to 
full system virtualisation? 

• How do Dom0 and device drivers work?
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ABSTRACT
Numerous systems have been designed which use virtualization to
subdivide the ample resources of a modern computer. Some require
specialized hardware, or cannot support commodity operating sys-
tems. Some target 100% binary compatibility at the expense of
performance. Others sacrifice security or functionality for speed.
Few offer resource isolation or performance guarantees; most pro-
vide only best-effort provisioning, risking denial of service.

This paper presents Xen, an x86 virtual machine monitor which
allows multiple commodity operating systems to share conventional
hardware in a safe and resource managed fashion, but without sac-
rificing either performance or functionality. This is achieved by
providing an idealized virtual machine abstraction to which oper-
ating systems such as Linux, BSD and Windows XP, can be ported
with minimal effort.

Our design is targeted at hosting up to 100 virtual machine in-
stances simultaneously on a modern server. The virtualization ap-
proach taken by Xen is extremely efficient: we allow operating sys-
tems such as Linux and Windows XP to be hosted simultaneously
for a negligible performance overhead — at most a few percent
compared with the unvirtualized case. We considerably outperform
competing commercial and freely available solutions in a range of
microbenchmarks and system-wide tests.
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1. INTRODUCTION
Modern computers are sufficiently powerful to use virtualization

to present the illusion of many smaller virtual machines (VMs),
each running a separate operating system instance. This has led to
a resurgence of interest in VM technology. In this paper we present
Xen, a high performance resource-managed virtual machine mon-
itor (VMM) which enables applications such as server consolida-
tion [42, 8], co-located hosting facilities [14], distributed web ser-
vices [43], secure computing platforms [12, 16] and application
mobility [26, 37].

Successful partitioning of a machine to support the concurrent
execution of multiple operating systems poses several challenges.
Firstly, virtual machines must be isolated from one another: it is not
acceptable for the execution of one to adversely affect the perfor-
mance of another. This is particularly true when virtual machines
are owned by mutually untrusting users. Secondly, it is necessary
to support a variety of different operating systems to accommodate
the heterogeneity of popular applications. Thirdly, the performance
overhead introduced by virtualization should be small.

Xen hosts commodity operating systems, albeit with some source
modifications. The prototype described and evaluated in this paper
can support multiple concurrent instances of our XenoLinux guest
operating system; each instance exports an application binary inter-
face identical to a non-virtualized Linux 2.4. Our port of Windows
XP to Xen is not yet complete but is capable of running simple
user-space processes. Work is also progressing in porting NetBSD.

Xen enables users to dynamically instantiate an operating sys-
tem to execute whatever they desire. In the XenoServer project [15,
35] we are deploying Xen on standard server hardware at econom-
ically strategic locations within ISPs or at Internet exchanges. We
perform admission control when starting new virtual machines and
expect each VM to pay in some fashion for the resources it requires.
We discuss our ideas and approach in this direction elsewhere [21];
this paper focuses on the VMM.

There are a number of ways to build a system to host multiple
applications and servers on a shared machine. Perhaps the simplest
is to deploy one or more hosts running a standard operating sys-
tem such as Linux or Windows, and then to allow users to install
files and start processes — protection between applications being
provided by conventional OS techniques. Experience shows that
system administration can quickly become a time-consuming task
due to complex configuration interactions between supposedly dis-
joint applications.

More importantly, such systems do not adequately support per-
formance isolation; the scheduling priority, memory demand, net-
work traffic and disk accesses of one process impact the perfor-
mance of others. This may be acceptable when there is adequate
provisioning and a closed user group (such as in the case of com-
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