
Colin Perkins | https://csperkins.org/ | Copyright © 2017 | This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-nd/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Real-time Systems: Scheduling Aperiodic and
Sporadic Tasks

Advanced Operating Systems (M)
Lecture 16

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Lecture Outline

• Aperiodic and sporadic tasks
• System model

• Acceptance test concept

• Scheduling aperiodic and sporadic jobs
• Background execution

• Sporadic server

2

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Aperiodic and Sporadic Tasks

• The jobs in an aperiodic task have unpredictable release times, but
no deadline
• Problem: schedule the jobs without disrupting correctness of the system

• Aperiodic jobs are always accepted

• A sporadic task is an aperiodic task with a deadline
• Cannot guarantee systems with sporadic tasks are correct without bounding

release or execution time

• Based on the execution time and deadline of each newly arrived sporadic
job, decide whether to accept or reject the job
• Accepting the job implies that the job will complete within its deadline, without causing

any periodic task or previously accepted sporadic job to miss its deadline

• Do not accept a sporadic job if cannot guarantee it will meet its deadline; the remainder
of the system can still be scheduled

• If accepted, schedule their jobs without disrupting correctness of rest of the
system

3

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

System Model

4

Processor
Aperiodic jobs

Periodic jobs

Sporadic jobs

Acceptance 

Rejection

S
ch

ed
ul

er
Single processor; independent, preemptable, periodic tasks can
be scheduled in absence of aperiodic and sporadic jobs

Aperiodic and sporadic jobs are preemptable and independent

Accepted jobs placed on priority queues; each type of
job queued separately with known queuing discipline

Scheduler selects from jobs
at head of priority queues

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Scheduling Aperiodic Jobs

• Run aperiodic jobs as lowest priority in the system: only run if no
periodic or sporadic jobs available

• Clearly produces correct schedules, and extremely simple to
implement

• Response times poor; acceptable as no deadlines

5

T1 = (3, 1)

T2 = (10, 4)

A : ea= 0.7

Response time = 7.7

RM schedule 
of T1 and T2

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Scheduling Sporadic Jobs

• How to schedule sporadic jobs alongside a system of periodic tasks
and aperiodic jobs?
• Based on the execution time and deadline of each newly arrived sporadic

job, decide whether to accept or reject the job

• Accepting the job implies that the job will complete within its deadline,
without causing any periodic task or previously accepted sporadic job to
miss its deadline

• Do not accept a sporadic job if cannot guarantee it will meet its deadline

• Requires a sporadic server to execute the jobs

6

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Periodic Servers

• A sporadic server is a particular kind of periodic server

• A periodic server is a task that behaves much like a periodic task,
but created to execute aperiodic jobs
• A periodic server, Tps = (pps, eps) never executes for more than eps units of time

within each period pps
• The budget of the server is eps

• Budget consumed when the server is executing, and replenished periodically

• A periodic server is backlogged if the aperiodic job queue is nonempty

• A periodic server is scheduled as any other periodic task, except it only
executes when scheduled and when it is backlogged and has non-zero
budget

7

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

The Sporadic Server

• System, T, of independent preemptable periodic tasks and a
sporadic server with parameters (ps, es)
• Fixed-priority scheduling; system can be scheduled if sporadic server

behaves as a periodic task with parameters (ps, es)

• Define:
• TH : the periodic tasks with higher priority than the server (may be empty)

• tr : the last time the server budget replenished

• tf : the first instant after tr at which the server begins to execute

• At any time t define:
• BEGIN as the start of the earliest busy interval in the most recent contiguous sequence of

busy intervals of TH starting before t (busy intervals are contiguous if the later one starts
immediately the earlier one ends)

• END as the end of the latest busy interval in this sequence if this interval ends before t;  
define END = ∞ if the interval ends after t

8

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

The Sporadic Server

• Consumption rule:
• At any time t ≥ tr, if the server has budget and if either of the following two

conditions is true, the budget is consumed at the rate of 1 per unit time:
• C1: The server is executing

• C2: The server has executed since tr and END < t

• When they are not true, the server holds its budget

• That is:
• The server executes for no more time than it has execution budget

• The server retains its budget if:
• A higher-priority job is executing, or

• It has not executed since tr

• Otherwise, the budget decreases when the server executes, or if it idles
while it has budget

9

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

The Sporadic Server

• Replenishment rules
• R1: When system begins executing, and each time budget is replenished,

set the budget to eS and tr = the current time.

• R2: When server begins to execute (defined as time tf)  
 if END = tf then  
 te = max(tr, BEGIN) 
 else if END < tf then  
 te = tf 
 The next replenishment time is set to te + pS

• R3: budget replenished at the next replenishment time, unless:
• If te + pS is earlier than tf the budget is replenished as soon as it is exhausted

• If T becomes idle before te + pS, and becomes busy again at tb, the budget is replenished
at min(tb, te + pS)

10

te = effective replenishment time

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Example

11

TSS

T1

T2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

T3

T1=(3, 0.5), T2=(4, 1.0), T3=(19, 4.5), Tss=(5, 1.5) 
Rate monotonic schedule; simple sporadic server

A1: r = 3, e = 1

A2: r = 7, e = 2

A3: r = 15.5, e = 2

A1 A2 A3

Max. blocking time due 
to sporadic server = 1.5

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Example

120.0

1.0

Budget

0.5

1.5

No aperiodic jobs 
server suspended

Job A1 released, 
server blocked

Job A1 executes

Budget continues to be used 
according to rule C2

Job A2 released 
but no budget

Budget available 
but blocked

Job A2 executes
No budget

Sporadic server is constrained to execute
for at most 1.5 units out of every 5, due to
consumption and replenishment rules

A1 A2 A3

TSS

T1

T2

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Correctness of Schedule

• More complex than a polling server or a deferrable server, but much
easier to prove the system can be scheduled

• Theorem: for the purpose of validating a schedule, you can treat a
simple sporadic server (ps, es) in a fixed-priority system exactly the
same as any other periodic task Ti with pi = ps and ei = es
• The actual inter-release times of the sporadic server is sometimes greater

than ps, and their execution times less than es, but this does not affect
correctness

13

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Scheduling Sporadic Jobs

• How to schedule sporadic jobs alongside a system of periodic tasks
and aperiodic jobs?

• Recall the sporadic job scheduling problem:
• Based on the execution time and deadline of each newly arrived sporadic

job, decide whether to accept or reject the job

• Accepting the job implies that the job will complete within its deadline,
without causing any periodic task or previously accepted sporadic job to
miss its deadline

• Do not accept a sporadic job if cannot guarantee it will meet its deadline

14

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Model for Scheduling Sporadic Jobs

• When sporadic jobs arrive, they are both accepted and scheduled
in EDF order
• In a dynamic-priority system, this is the natural order of execution

• In a fixed-priority system, the sporadic jobs are executed by a periodic server
that performs an acceptance test, and runs the sporadic jobs in EDF order

• In both cases, no new scheduling algorithm is required

• Definitions:
• Sporadic jobs are denoted by Si(ri, di, ei) where ri is the release time, di is the

(absolute) deadline, and ei is the maximum execution time

• The density of a sporadic job Δi = ei/(di − ri)
• The total density of a system of n jobs is Δ = Δ1 + Δ2 + … + Δn

• The job is active during its feasible interval (ri, di]

15

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Sporadic Jobs in Dynamic-Priority Systems

• Theorem: A system of independent preemptable sporadic jobs can
be scheduled using EDF if the total density of all active jobs in the
system ≤ 1 at all times
• This is the standard scheduling test for EDF systems, but including both

periodic and sporadic jobs

• This test uses the density since deadlines may not equal periods; hence it is
a sufficient test, but not a necessary test

• What does this mean?
• If we can bound the frequency with which sporadic jobs appear to the

running system, we can guarantee that none are missed

• Alternatively, when a sporadic job arrives, if we deduce that the total density
would exceed 1 in its feasible interval, we reject the sporadic job (admission
control)

16

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Admission Control for Sporadic Jobs/EDF

• At time t there are n active sporadic jobs, stored in non-decreasing
order of deadline
• The deadlines partition the time from t to ∞ into n + 1 discrete intervals:  

I1, I2, …, In+1
• I1 begins at t and ends at the earliest sporadic job deadline

• For each 1 ≤ k ≤ n, each interval Ik+1 begins when the interval Ik ends, and ends at the
next deadline in the list (or ∞ for In+1)

• The scheduler maintains the total density Δs,k of each interval Ik

• Let Il be the interval containing the deadline d of the new sporadic
job S(t, d, e)
• The scheduler accepts the job if 

for all k = 1, 2, …, l  
where Δ is density of periodic jobs

• i.e., accept if the new sporadic job can be added, without increasing the
density of any intervals past 1

17

Density of new job
e

d� t
+�s,k  1��

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Admission Control for Sporadic Jobs/EDF

• Notes:
• This acceptance test is not optimal: a sporadic job may be rejected even

though it could be scheduled (the result for the maximum utilisation is based
on the density and hence is sufficient but not necessary)

• It is possible to derive a – much more complex – expression taking into
account slack time, that is optimal. Unclear if the complexity is worthwhile.

• This acceptance test assumes every sporadic job is ready for execution
when released
• If this is not the case, must modify the acceptance test to take into account the time when

the jobs become ready, rather than their release time, when testing the intervals to see if
their density exceeds 1

18

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Sporadic Jobs in Fixed-Priority Systems

• Use a sporadic server to execute sporadic jobs in a fixed-priority
system
• The server (ps, es) has budget es units every ps units of time, so the scheduler

can compute the least amount of time available to every sporadic job in the
system

• Assume that sporadic jobs ordered among themselves in EDF

• When first sporadic job S1(t, ds,1, es,1) arrives, there is at least  
⎣(ds,1 − t)/ps⎦⋅es units of processor time available to the server 
before the deadline of the job
• ⎣(ds,1 − t)/ps⎦ = number of server periods available

• Therefore it accepts S1 if slack of job

19

[cont’d]

Time available

Execution time

�s,1(t) = b(ds,1 � t)/psc es � es,1 � 0

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Sporadic Jobs in Fixed-Priority Systems

• To decide if a new job Si(t, ds,i, es,i) is acceptable when there are n sporadic
jobs in the system, the scheduler first computes the slack σs,i(t) of Si: 
 
 
 
where ξs,k is the execution time of the completed part of the existing job Sk 
The job cannot be accepted if σs,i(t) < 0
• As for σs,1(t), but accounting for the already accepted sporadic jobs

• If σs,i(t) ≥ 0, the scheduler then checks if any existing sporadic job Sk with
deadline after ds,i may be adversely affected by the acceptance of Si
• Check if the slack σs,k(t) for each Sk at the time is at least equal to the execution time es,i of

Si (i.e., Si is accepted if σs,k(t) − es,i ≥ 0 for every existing sporadic job Sk with deadline ≥ ds,i)

• This acceptance test for fixed-priority systems is more complex than that for
dynamic-priority systems, but is still of reasonable time complexity to be
implemented “on-line”

20

�s,i(t) = b(ds,i � t)/psc es � es,i �
X

ds,k<ds,i

(es,k � ⇠s,k)

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Practical Usage

• Hybrid sporadic/background server included in real time extensions
to POSIX
• Use the SCHED_SPORADIC scheduling policy

• When server has budget, runs at sched_priority, otherwise runs as a
background server at sched_ss_low_priority
• Set sched_ss_low_priority to be lower priority than real-time tasks, but possibly higher

than other non-real-time tasks in the system

• Also defines the replenishment period and the initial budget after
replenishment

• As usual with POSIX, applicable to fixed-priority systems only

21

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Summary

• Use of sporadic server for scheduling aperiodic tasks – complex to
implement, easy to prove correctness

• Scheduling sporadic tasks
• In EDF systems – density test for correctness

• In RM systems using sporadic server – complex rules for correctness, but
intuition of behaviour straight-forward

22

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

