
Colin Perkins | https://csperkins.org/ | Copyright © 2017 | This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License. To 
view a copy of this license, visit http://creativecommons.org/licenses/by-nd/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Real-time Systems: Scheduling Periodic Tasks

Advanced Operating Systems 
Lecture 15

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/


Colin Perkins | https://csperkins.org/ | Copyright © 2017

Lecture Outline

• System Model 

• Scheduling periodic tasks 

• The rate monotonic algorithm 
• Time-demand analysis 

• Maximum utilisation test 

• The earliest deadline first algorithm 
• Maximum utilisation test 

• Discussion

2

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/


Colin Perkins | https://csperkins.org/ | Copyright © 2017

Introduction to Real-time Systems

• Real-time systems deliver services while meeting timing constraints 
• Not necessarily fast, but must meet some deadline 

• Many real-time systems embedded as part of a larger device or system: 
washing machine, photocopier, phone, car, aircraft, industrial plant, etc. 

• Frequently require validation for correctness 
• Many embedded real-time systems are safety critical – if they don’t work in a 

timely and correct basis, serious consequences result 

• Bugs in embedded real-time systems can be difficult or expensive to repair – 
e.g., can’t easily update software in a car!

3

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/


Colin Perkins | https://csperkins.org/ | Copyright © 2017

Typical System Model

• Control a device using actuator, based 
on sampled sensor data 
• Control loop compares measured value and 

reference 

• Depends on correct control law computation, 
reference input, accuracy of measurements 

• Time between measurements of y(t), r(t) is 
the sampling period, T 

• Small T better approximates analogue 
control but large T needs less processor 
time; if T is too large, oscillation will result as 
the system fails to keep up with changes in 
the input 

• Simple control loop conceptually easy 
to implement 

• Complexity comes from multiple control 
loops running at different rates, of if the 
system contains aperiodic components

4

Control-law 
computation D/AA/D

A/D

ActuatorSensor Device

Reference 
input: r(t)

rk

yk

y(t)

u(t)

uk

Controller

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/


Colin Perkins | https://csperkins.org/ | Copyright © 2017

Jobs, Tasks, Processors, and Resources

• Scheduling algorithms describe how jobs execute on a single processor 
• A job is a unit of work scheduled and executed by the system 

• Each job comprises a set of tasks T = {J1, J2, …, Jn} 

• Tasks have execution time ei and deadline: 

• Jobs can depend on resources 
• e.g., hardware devices 

• Resources have different types or sizes, but no speed, and are not consumed by use 

• Jobs compete for resources, and can block if a resource is in use

5

C
o
p
y
ri

g
h
t 

©
 2

0
0
6
 U

n
iv

er
si

ty
 o

f 
G

la
sg

o
w

 

A
ll

 r
ig

h
ts

 r
es

er
v
ed

. 

Deadlines and Timing Constraints 

•! Completion time – the instant at which a job completes execution 

•! Relative deadline – the maximum allowable job response time 

•! Absolute deadline – the instant of time by which a job is required 

to be completed (often called simply the deadline) 

–! absolute deadline = release time + relative deadline 

–! Feasible interval for a job Ji is the interval (ri, di] 

•! Deadlines are examples of timing constraints 

Job, Ji Time 

Response time 

Relative deadline, Di 

Absolute deadline, di 

Completion time 

ri
+ ri

- 

Release time, ri 

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/


Colin Perkins | https://csperkins.org/ | Copyright © 2017

Periodic Schedules

• If jobs occur on a regular cycle, task is periodic and characterised 
by parameters Ti = (φi, pi, ei, Di) 
• Phase, φi, of the task is the release time of the first job 

• Period, pi, of the task is the time between release of consecutive jobs 

• Execution time, ei, of the task is the maximum execution time of the jobs 

• Utilisation of a task is ui = ei / pi 

• Relative deadline, Di, is the minimum relative deadline of the jobs 

• Hyper-period H = lcm(pi) ∀ pi

C
o
p
y
ri

g
h
t 

©
 2

0
0
6
 U

n
iv

er
si

ty
 o

f 
G

la
sg

o
w

 

A
ll

 r
ig

h
ts

 r
es

er
v
ed

. 

Modelling Periodic Tasks 

•! The hyper-period of a set of periodic tasks is the least common 

multiple of their periods:  H = lcm(pi) for i = 1, 2, …, n 

–! Time after which the pattern of job release/execution times starts to repeat, 

limiting analysis needed 

•! Example: 

–! T1 : p1 = 3, e1  = 1 

–! T2 : p2 = 5, e2 = 2 

H = lcm(3, 5) = 15 

Time 
0 5 10 15 20 25 30 

J1,1 J1,2 J1,3 J1,4 J1,5 

J2,1 J2,2 J2,2 J2,3 

6

Schedule repeats every hyper-period → if  
correct for one hyper-period, correct for all

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/


Colin Perkins | https://csperkins.org/ | Copyright © 2017

Scheduling in Real-time Systems

• How do we schedule systems of periodic tasks, so that all tasks 
provably meet their deadline? 

• Two common algorithms: 
• Rate monotonic (RM) 

• Earliest deadline first (EDF) 

• Trade-off optimality, stability, and ease of validation

7

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/


Colin Perkins | https://csperkins.org/ | Copyright © 2017

Rate Monotonic Algorithm

• Assign priorities to jobs in each task based on period of the task 
• Shorter period → higher priority; rate (of job releases) is the inverse of the 

period, so jobs with higher rate have higher priority 

• Rationale: schedule jobs with most deadlines first, fit others around them 

• All jobs in a task have the same priority – fixed priority algorithm 

• Three ways of proving correctness of schedule: 
• Exhaustive simulation for the hyper-period 

• Time demand analysis 

• Maximum utilisation 

8

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/


Colin Perkins | https://csperkins.org/ | Copyright © 2017

Rate Monotonic: Example

9

Time Ready to run Running
0 J2,1  J3,1 J1,1

1 J3,1 J2,1

2 J3,1 J2,1

3 J3,1

4 J3,1 J1,2

5 J3,1 J2,2

6 J3,1 J2,2

7 J3,1

8 J3,1 J1,3

9 J3,1

Time Ready to run Running
10 J3,1 J2,3

11 J3,1 J2,3

12 J3,1 J1,4

13 J3,1

14 J3,1

15 J2,4

16 J2,4 J1,5

17 J2,4

18
19

All tasks meet deadlines: proof by exhaustive simulation

J1,5 J2,4J1,1 J1,2 J1,3 J1,4 J2,4J2,1 J3,1 J2,3J2,2 J3,1 J3,1 J3,1

J1,1 J1,2 J1,3 J1,4

J1,5

J2,2J2,1 J2,3

J2,4

J3,1R
el

ea
se

d

0 4 8 12 16 20

T1 = (φ = 0, p = 4, e = 1, D = p) ⇒ rate = 1/4  
T2 = (φ = 0, p = 5, e = 2, D = p) ⇒ rate = 1/5  
T3 = (φ = 0, p = 20, e = 5, D = p) ⇒ rate = 1/20

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/


Colin Perkins | https://csperkins.org/ | Copyright © 2017

Time Demand Analysis

• Exhaustive simulation error prone and tedious – an alternative is 
time demand analysis 
• Fixed priority algorithms predictable; do not suffer scheduling anomalies 

• The worst case execution time of the system occurs with the worst case execution time of 
the jobs, unlike dynamic priority algorithms which can exhibit anomalous behaviour  

• Basis of general proof that system can be scheduled to meet all deadlines 
• Find critical instants when system is most loaded, and has its worst response time 

• Use time demand analysis to check if system can be scheduled at those instants 

• In absence of scheduling anomalies, system will meet all deadlines if it can be scheduled 
at critical instants

10

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/


Colin Perkins | https://csperkins.org/ | Copyright © 2017

Finding Critical Instants

• Critical instant of a job is the worst-case release time for that job, 
taking into account all jobs that have higher priority 
• i.e., job is released at the same instant as all jobs with higher priority are 

released, and must wait for all those jobs to complete before it executes 

• Response time, wi,k, of a job released at a critical instant is the maximum 
possible response time of that job 

• Definition of a critical instant:

11

All jobs meet deadlines, but this is when 
job with the slowest response is started

If some jobs don’t meet deadlines, 
this is one of those jobs

if wi,k ≤ Di,k for every Ji,k in Ti then 

The job released at that instant has maximum response 
time of all jobs in Ti and Wi = wi,k 

else if ∃ Ji,k : wi,k > Di,k then 

The job released at that instant has response time > D 

where wi,k is the response time of the job

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/


Colin Perkins | https://csperkins.org/ | Copyright © 2017

T1 = (φ = 0, p = 2.0, e = 0.6, D = p)

T2 = (φ = 0, p = 2.5, e = 0.2, D = p)

T3 = (φ = 0, p = 3.0, e = 1.2, D = p)

0 1 2 3 4 5 6 7 8 9 10 11 12

Finding Critical Instants: Example

12

• 3 tasks scheduled using the rate-monotonic algorithm 

• Response times of jobs in T2 are: r2,1 = 0.8, r2,2 = 0.2, r2,3 = 0.2, r2,4 = 0.2, r2,5 = 0.8, … 

• Therefore critical instants of T2 are t = 0 and t = 10

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/


Colin Perkins | https://csperkins.org/ | Copyright © 2017

• Simulate system behaviour at the critical instants 
• For each job Ji,c released at a critical instant, if Ji,c and all higher priority tasks 

complete executing before their relative deadlines the system can be 
scheduled 

• Compute the total demand for processor time by a job released at a critical 
instant of a task, and by all the higher-priority tasks, as a function of time 
from the critical instant; check if this demand can be met before the deadline 
of the job: 
• Consider one task, Ti, at a time, starting highest priority and working down to lowest 

priority 

• Focus on a job, Ji, in Ti, where the release time, t0, of that job is a critical instant of Ti 

• At time t0 + t for t ≥ 0, the processor time demand wi(t) for  
this job and all higher-priority jobs released in [t0, t] is:

Time-demand Analysis

13

wi(t) is the time-demand function

Execution time of job Ji Execution time of higher priority 
jobs started during this interval

wi(t) = ei +
i�1X

k=1

⇠
t

pk

⇡
ek

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/


Colin Perkins | https://csperkins.org/ | Copyright © 2017

Using the Time-demand Function

• Compare time-demand function, wi(t), and available time, t: 
• If wi(t) ≤ t at some t ≤ Di, the job, Ji, meets its deadline, t0 + Di 

• If wi(t) > t for all 0 < t ≤ Di then the task probably cannot complete by its 
deadline; and the system likely cannot be scheduled using a fixed priority 
algorithm 
• Note that this is a sufficient condition, but not a necessary condition. Simulation may 

show that the critical instant never occurs in practice, so the system could be feasible… 

• Use this method to check that all tasks are can be scheduled if 
released at their critical instants; if so conclude the entire system 
can be scheduled

14

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/


Colin Perkins | https://csperkins.org/ | Copyright © 2017

Time-demand Analysis: Example

The time-demand, wi(t), is a staircase function 
with steps at multiples of higher priority task 
periods 

Plot time-demand versus available time 
graphically, to get intuition into approach

15

J3,1 starts with a time  
demand of 5 units: 2 
for itself, 2 for J2,1,  
1 for J1,1

0 2 4 6 8 10
0

2

4

6

8

10

Time, t

Ti
m

e-
de

m
an

d 
fu

nc
tio

n,
 w

i(t
)

w1(t)

w2(t)

t

Deadline for J1,1

Deadline for J2,1

J3,1 deadline

w3(t)

Example: a rate monotonic system 
T1 = (3, 1), T2 = (5, 2), T3 = (10, 2)  
with φ = 0, D = p for all tasks

Time-demand functions w1(t), w2(t) 
and w3(t) are below t at deadlines, 
so the system can be scheduled – 
simulate the system to check this!

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/


Colin Perkins | https://csperkins.org/ | Copyright © 2017

Time-demand Analysis

• Works for any fixed-priority scheduling algorithm with periodic tasks 
where Di < pi for all tasks 

• Only a sufficient test: 
• System can be scheduled if time demand less than time available before 

critical instants 

• But, might be possible to schedule if time demand exceeds available time – 
further validation (i.e., exhaustive simulation) needed in this case

16

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/


Colin Perkins | https://csperkins.org/ | Copyright © 2017

Time-demand Analysis

• Time demand analysis is complex – useful for two reasons: 
• General mechanism for proof of correctness – more efficient for machine 

calculation when hyper-period is large 

• As the theory underlying simpler approaches based on maximum utilisation 
• For simply periodic rate monotonic systems 

• For general rate monotonic systems

17

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/


Colin Perkins | https://csperkins.org/ | Copyright © 2017

Simply Periodic Rate Monotonic Tasks

• Simply periodic systems: periods of all tasks are integer multiples of 
each other 

• Rate monotonic optimal for simply periodic systems 

• Proof follows from time-demand analysis: 
• A simply periodic system, assume tasks in phase 

• Worst case execution time occurs when tasks in phase 

• Ti misses deadline at time t where t is an integer multiple of pi 
• Again, worst case ⇒ Di = pi 

• Simply periodic ⇒ t integer multiple of periods of all higher priority tasks 

• Total time required to complete jobs with deadline ≤ t is  
which only fails when U > 1 

• A simply periodic rate monotonic system can be scheduled if U ≤ 1

18

iX

k=1

ek
pk

t = t · Ui

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/


Colin Perkins | https://csperkins.org/ | Copyright © 2017

RM Maximum Utilisation Test: Di = pi

• Maximum utilisation test can be derived for any RM system:  
• A system of n independent preemptable periodic tasks with Di = pi can be 

scheduled on one processor using rate monotonic if U ≤ n⋅(21/n – 1)  
(Proof derives from time demand analysis) 

• URM(n) = n⋅(21/n – 1)  
 
For large n, URM(n) → ln 2    
(i.e., URM(n) → 0.6931…) 

• U ≤ URM(n) is a sufficient, but not necessary, condition – an RM schedule is 
guaranteed to exist if U ≤ URM(n), but might still be possible if U > URM(n)

19

0.7

0.6

0.8

0.9

2 4 6 8 10 12 14 16 18
n

URM(n)

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/


Colin Perkins | https://csperkins.org/ | Copyright © 2017

RM Maximum Utilisation Test: Di ≠ pi

• For n tasks, where Dk = υ⋅pk  
it can be shown that:

20

URM (n, v) =

8
<

:

v for 0  v  0.5
n((2v)

1
n � 1) + 1� v for 0.5  v  1

v(n� 1)[(

v+1
v )

1
n�1 � 1] for v = 2, 3, . . .

n υ = 4.0 υ = 3.0 υ = 2.0 υ = 1.0 υ = 0.9 υ = 0.8 υ = 0.7 υ = 0.6 υ = 0.5
2 0.944 0.928 0.898 0.828 0.783 0.729 0.666 0.590 0.500
3 0.926 0.906 0.868 0.779 0.749 0.708 0.656 0.588 0.500
4 0.917 0.894 0.853 0.756 0.733 0.698 0.651 0.586 0.500
5 0.912 0.888 0.844 0.743 0.723 0.692 0.648 0.585 0.500
6 0.909 0.884 0.838 0.734 0.717 0.688 0.646 0.585 0.500
7 0.906 0.881 0.834 0.728 0.713 0.686 0.644 0.584 0.500
8 0.905 0.878 0.831 0.724 0.709 0.684 0.643 0.584 0.500
9 0.903 0.876 0.829 0.720 0.707 0.682 0.642 0.584 0.500
∞ 0.892 0.863 0.810 0.693 0.687 0.670 0.636 0.582 0.500

Di = piDi > pi ⇒ Maximum utilisation increases Di < pi ⇒ Maximum utilisation decreases

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/


Colin Perkins | https://csperkins.org/ | Copyright © 2017

The Earliest Deadline First Algorithm

• Assign priority to jobs based on deadline: earlier deadline = higher 
priority 

• Rationale: do the most urgent thing first 

• Dynamic priority algorithm: priority of a job depends on relative 
deadlines of all active tasks 
• May change over time as other jobs complete or are released 

• May differ from other jobs in the task

21

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/


Colin Perkins | https://csperkins.org/ | Copyright © 2017

Earliest Deadline First: Example

22

Time Ready to run Running
0 J2,1 J1,1

1 J2,1

2 J2,1 J1,2

3 J2,1

4 J1,3 J2,1

4.5 J1,3

5 J2,2 J1,3

5.5 J2,2

6 J2,2 J1,4

7 J2,2

Time Ready to run Running
8 J2,2 J1,5

9 J2,2

10 J2,3 J1,6

… … …

J1,2 J2,1 J1,3 J2,2 J1,4 J1,5J2,2 J2,2J2,1J1,1

J1,1 J1,2 J1,3 J1,4 J1,5

J2,2J2,1 J2,3

J1,6

R
el

ea
se

d

0 1 2 3 4 5 6 7 8 9 10

T1 = (p = 2, e = 1) 
T2 = (p = 5, e = 2.5) 
with φ = 0, D = p for both

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/


Colin Perkins | https://csperkins.org/ | Copyright © 2017

Earliest Deadline First is Optimal

• EDF is optimal, provided the system has a single processor, 
preemption is allowed, and jobs don’t contend for resources 
• That is, it will find a feasible schedule if one exists, not that it will always be 

able to schedule a set of tasks 

• EDF is not optimal with multiple processors, or if preemption is not 
allowed

23

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/


Colin Perkins | https://csperkins.org/ | Copyright © 2017

Earliest Deadline First is Optimal: Proof

• Any feasible schedule can be transformed into an EDF schedule 
• If Ji is scheduled to run before Jk, but Ji’s deadline is later than Jk’s either: 

• The release time of Jk is after the Ji completes ⇒ they’re already in EDF order 

• The release time of Jk is before the end of the interval when Ji executes: 

• Swap Ji and Jk (this is always possible, since Ji’s deadline is later than Jk’s) 

• Move any jobs following idle periods forward into the idle period 

• The result is an EDF schedule 

• So, if EDF fails to produce a feasible schedule, no such schedule exists 
• If a feasible schedule existed it could be transformed into an EDF schedule, contradicting 

the statement that EDF failed to produce a feasible schedule [proof for LST is similar]

24

Ji Jk

dk dirk

JiJkJk

Jk JiJk

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/


Colin Perkins | https://csperkins.org/ | Copyright © 2017

Maximum Utilisation Test

• When Di ≥ pi maximum utilisation = 1 
• Proof follows from optimality of the system 

• When Di < pi maximum utilisation test fails 
• Example: T1 = (2, 0.8), T2=(5, 2.3, 3) where φ = 0, D = p: 
 
 
 
 
 
U = 0.8/2 + 2.3/5 = 0.86 yet cannot be scheduled 

• Use density test: a system T of independent, preemptable periodic tasks can 
be feasibly scheduled on one processor using EDT if Δ ≤ 1  
where Δ = δ1 + δ2 + … + δn  and δi = ei / min(Di, pi) 

• This is a sufficient condition, but not a necessary condition – i.e., system is 
guaranteed to be feasible if Δ ≤ 1,  but might still be feasible if Δ > 1 (would 
have to run the exhaustive simulation to prove)

25

J2,2J1,1 J1,2 J1,3 J1,4

0 1 2 3 4 5 6 7

J2,1 J2,1 J2,2

J2,1 is preempted and misses deadline

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/


Colin Perkins | https://csperkins.org/ | Copyright © 2017

Discussion

• EDF is optimal, and simpler to prove correct – why use RM? 
• RM more widely supported since easier to retro-fit to standard fixed priority 

scheduler, and support included in POSIX real-time APIs 

• RM more predictable: worst case execution time of a task occurs with worst 
case execution time of the component jobs – not always true for EDF, where 
speeding up one job can increase overall execution time (known as a 
“scheduling anomaly”)

26

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

