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Lecture Outline

• Limitations of the kernel protocol stack 

• Alternative network stacks 

• Accelerating TCP via API improvements 

• Some cautionary remarks
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Network Performance Growth

• Network performance is increasing 
faster than CPU performance 
• Chart shows Ethernet bit rate over time 

– wireless links follow a similar curve 

• Closely tracking exponential growth 
over time – unlike CPU speed, which 
stopped growing significantly 
mid-2000s 

• MTU remains constant → packet 
rate increases 
• Maximum 14,880,952 packets/second 

on 10Gbps Ethernet (scales linearly 
with link rate) 

• Minimum size packet is 60 bytes data, 
with 8 byte preamble, 4 byte CRC; 12 
byte inter-frame gap (silent period) 
between packets 

• CPU cycles available to process 
each packet decreasing
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Limitations of the Kernel Protocol Stack

• Why does the traditional kernel protocol 
stack offer sub-optimal performance? 

• Designed when CPUs were faster than 
networks 
• Allocates memory for buffers on per-packet 

basis 

• Copies data multiple times, from NIC (“network 
interface card”) to kernel to application 

• System call to send/receive each packet 
• Layered architecture offers clean design, but not 

efficient packet processing 

• Example on right: timing of a sendto() system call 
on FreeBSD: 950ns total; overheads at each layer 
boundary due to system call, copies, etc. 

• How to redesign the protocol stack to 
reduce overheads?

4

navigating through buffer chains often exceeds that of
linearizing their content, even when producers do indeed
generate fragmented packets (e.g. TCP when prepending
headers to data from the socket buffers).

Raw packet I/O: The standard APIs to read/write raw
packets for user programs require at least one memory
copy to move data and metadata between kernel and user
space, and one system call per packet (or, in the best
cases, per batch of packets). Typical approaches involve
opening a socket or a Berkeley Packet Filter [14] device,
and doing I/O through it using send()/recv() or spe-
cialized ioctl() functions.

2.3 Case study: FreeBSD sendto()

To evaluate how time is spent in the processing of a
packet, we have instrumented the sendto() system call
in FreeBSD2 so that we can force an early return from
the system call at different depths, and estimate the time
spent in the various layers of the network stack. Figure 2
shows the results when a test program loops around a
sendto() on a bound UDP socket. In the table, “time”
is the average time per packet when the return point is at
the beginning of the function listed on the row; “delta” is
the difference between adjacent rows, and indicates the
time spent at each stage of the processing chain. As an
example, the userspace code takes 8 ns per iteration, en-
tering the kernel consumes an extra 96 ns, and so on.

As we can see, we find several functions at all levels
in the stack consuming a significant share of the total ex-
ecution time. Any network I/O (be it through a TCP or
raw socket, or a BPF writer) has to go through several
expensive layers. Of course we cannot avoid the system
call; the initial mbuf construction/data copy is expensive,
and so are the route and header setup, and (surprisingly)
the MAC header setup. Finally, it takes a long time to
translate mbufs and metadata into the NIC format. Lo-
cal optimizations (e.g. caching routes and headers in-
stead of rebuilding them every time) can give modest im-
provements, but we need radical changes at all layers to
gain the tenfold speedup necessary to work at line rate
on 10 Gbit/s interfaces.

What we show in this paper is how fast can we become
if we take such a radical approach, while still enforcing
safety checks on user supplied data through a system call,
and providing a libpcap-compatible API.

3 Related (and unrelated) work

It is useful at this point to present some techniques pro-
posed in the literature, or used in commercial systems, to

2We expect similar numbers on Linux and Windows.

File Function/description time delta

ns ns

user program sendto 8 96

system call

uipc syscalls.c sys sendto 104

uipc syscalls.c sendit 111

uipc syscalls.c kern sendit 118

uipc socket.c sosend —

uipc socket.c sosend dgram 146 137

sockbuf locking, mbuf

allocation, copyin

udp usrreq.c udp send 273

udp usrreq.c udp output 273 57

ip output.c ip output 330 198

route lookup, ip header

setup

if ethersubr.c ether output 528 162

MAC header lookup and

copy, loopback

if ethersubr.c ether output frame 690

ixgbe.c ixgbe mq start 698

ixgbe.c ixgbe mq start locked 720

ixgbe.c ixgbe xmit 730 220

mbuf mangling, device

programming

– on wire 950

Figure 2: The path and execution times for sendto() on
a recent FreeBSD HEAD 64-bit, i7-870 at 2.93 GHz +
Turboboost, Intel 10 Gbit NIC and ixgbe driver. Mea-
surements done with a single process issuing sendto()
calls. Values have a 5% tolerance and are averaged over
multiple 5s tests.

improve packet processing speeds. This will be instru-
mental in understanding their advantages and limitations,
and to show how our framework can use them.

Socket APIs: The Berkeley Packet Filter, or BPF [14],
is one of the most popular systems for direct access to
raw packet data. BPF taps into the data path of a net-
work device driver, and dispatches a copy of each sent or
received packet to a file descriptor, from which userspace
processes can read or write. Linux has a similar mech-
anism through the AF PACKET socket family. BPF can
coexist with regular traffic from/to the system, although
usually BPF clients put the card in promiscuous mode,
causing large amounts of traffic to be delivered to the
host stack (and immediately dropped).

Packet filter hooks: Netgraph (FreeBSD), Netfil-
ter (Linux), and Ndis Miniport drivers (Windows) are
in-kernel mechanisms used when packet duplication is
not necessary, and instead the application (e.g. a fire-
wall) must be interposed in the packet processing chain.
These hooks intercept traffic from/to the driver and pass

3

Source: L. Rizzo. netmap: a novel framework for fast packet I/O. In Proceedings 
of the USENIX Annual Technical Conference, Boston, MA, USA, June 2012. 
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An Alternative Network Stack: netmap

• Changes network API – a mechanism to give an 
application dedicated control of a NIC 
• A replacement for libpcap, not the Sockets API 

• Basis for fast packet capture applications; software router; 
user-space protocol stack – not general purpose 

• Pre-allocate buffers, that are shared between OS 
and user application; coordinate buffer ownership 
• No memory allocation at time the packets are sent/received 

• No data copies – DMA direct to application accessible 
memory 

• Fewer system calls – one system call can transfer 
ownership of multiple buffers between application and kernel 

• NIC uses efficient DMA to transfer packets to and 
from memory; kernel manages synchronisation and 
memory protection 
• Kernel is the control plane 

• NIC and DMA transfer manage the data plane
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netmap: a novel framework for fast packet I/O

Luigi Rizzo, Università di Pisa, Italy∗

Proceedings of the 2012 USENIX Annual Technical Conference, June 2012.

https://www.usenix.org/conference/atc12/ †

Abstract

Many applications (routers, traffic monitors, firewalls,
etc.) need to send and receive packets at line rate even on
very fast links. In this paper we present netmap, a novel
framework that enables commodity operating systems
to handle the millions of packets per seconds traversing
1..10 Gbit/s links, without requiring custom hardware or
changes to applications.

In building netmap, we identified and successfully re-
duced or removed three main packet processing costs:
per-packet dynamic memory allocations, removed by
preallocating resources; system call overheads, amor-
tized over large batches; and memory copies, elimi-
nated by sharing buffers and metadata between kernel
and userspace, while still protecting access to device reg-
isters and other kernel memory areas. Separately, some
of these techniques have been used in the past. The nov-
elty in our proposal is not only that we exceed the perfor-
mance of most of previous work, but also that we provide
an architecture that is tightly integrated with existing op-
erating system primitives, not tied to specific hardware,
and easy to use and maintain.

netmap has been implemented in FreeBSD and Linux
for several 1 and 10 Gbit/s network adapters. In our pro-
totype, a single core running at 900 MHz can send or
receive 14.88 Mpps (the peak packet rate on 10 Gbit/s
links). This is more than 20 times faster than conven-
tional APIs. Large speedups (5x and more) are also
achieved on user-space Click and other packet forward-
ing applications using a libpcap emulation library run-
ning on top of netmap.

∗This work was funded by the EU FP7 project CHANGE (257422).
†USENIX plans to publish this paper on the Proceedings

of the 2012 USENIX Annual Technical Conference, which will
be available at this URL after June 13, 2012. You may
also find this paper, with related material, on the author’s site,
http://info.iet.unipi.it/ luigi/netmap/

1 Introduction

General purpose OSes provide a rich and flexible envi-
ronment for running, among others, many packet pro-
cessing and network monitoring and testing tasks. The
high rate raw packet I/O required by these applica-
tions is not the intended target of general purpose OSes.
Raw sockets, the Berkeley Packet Filter [14] (BPF), the
AF SOCKET family, and equivalent APIs have been
used to build all sorts of network monitors, traffic gen-
erators, and generic routing systems. Performance, how-
ever, is inadequate for the millions of packets per sec-
ond (pps) that can be present on 1..10 Gbit/s links. In
search of better performance, some systems (see Sec-
tion 3) either run completely in the kernel, or bypass the
device driver and the entire network stack by exposing
the NIC’s data structures to user space applications. Ef-
ficient as they may be, many of these approaches depend
on specific hardware features, give unprotected access to
hardware, or are poorly integrated with the existing OS
primitives.

The netmap framework presented in this paper com-
bines and extends some of the ideas presented in the
past trying to address their shortcomings. Besides giving
huge speed improvements, netmap does not depend on
specific hardware1, has been fully integrated in FreeBSD
and Linux with minimal modifications, and supports un-
modified libpcap clients through a compatibility library.

One metric to evaluate our framework is performance:
in our implementation, moving one packet between the
wire and the userspace application has an amortized cost
of less than 70 CPU clock cycles, which is at least one
order of magnitude faster than standard APIs. In other
words, a single core running at 900 MHz can source or
sink the 14.88 Mpps achievable on a 10 Gbit/s link. The
same core running at 150 MHz is well above the capacity

1netmap can give isolation even without hardware mechanisms such
as IOMMU or VMDq, and is orthogonal to hardware offloading and
virtualization mechanisms (checksum, TSO, LRO, VMDc, etc.)

1

L. Rizzo. netmap: a novel framework for 
fast packet I/O. In Proceedings of the 
USENIX Annual Technical Conference, 
Boston, MA, USA, June 2012.  
https://www.usenix.org/conference/atc12/
technical-sessions/presentation/rizzo 
(paper and video of presentation)
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Shared Ownership of NIC Buffers (1)

• Modern NICs maintain circular 
buffers sized to hold queues of full 
size packets 
• NIC writes incoming packets direct to 

one segment of ring buffer via DMA 

• Operating system copies from other 
segment into lower layer of protocol 
stack – first of several copies 

• If using netmap → OS disconnected; 
ownership of ring buffer segment is 
temporarily granted to application to 
process packets in place 

• (Analogous for outgoing packets)

6

Ownership granted 
to application

Ownership maintained 
by NIC and DMA
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Shared Ownership of NIC Buffers (2)

7

distinctive feature of netmap is the attempt to design and
implement an API that is simple to use, tightly integrated
with existing OS mechanisms, and not tied to a specific
device or hardware features.

netmap achieves its high performance through several
techniques:

• a lightweight metadata representation which is com-
pact, easy to use, and hides device-specific fea-
tures. Also, the representation supports processing
of large number of packets in each system call, thus
amortizing its cost;

• linear, fixed size packet buffers that are preallocated
when the device is opened, thus saving the cost of
per-packet allocations and deallocations;

• removal of data-copy costs by granting applications
direct, protected access to the packet buffers. The
same mechanism also supports zero-copy transfer
of packets between interfaces;

• support of useful hardware features (such as multi-
ple hardware queues).

Overall, we use each part of the system for the task it is
best suited to: the NIC to move data quickly between the
network and memory, and the OS to enforce protection
and provide support for synchronization.

host
stack

NIC rings

netmap API

Application

netmap
rings

network adapter

Figure 3: In netmap mode, the NIC rings are discon-
nected from the host network stack, and exchange pack-
ets through the netmap API. Two additional netmap rings
let the application talk to the host stack.

At a very high level, when a program requests to put
an interface in netmap mode, the NIC is partially dis-
connected (see Figure 3) from the host protocol stack.
The program gains the ability to exchange packets with
the NIC and (separately) with the host stack, through
circular queues of buffers (netmap rings) implemented
in shared memory. Traditional OS primitives such as

indexflags len

ring_size

cur

buf_ofs

flags

avail

num_rings

ring_ofs[]
pkt_buf

pkt_buf

pkt_buf

pkt_buf

netmap_if netmap rings
phy_addr
len

NIC ring

Figure 4: User view of the shared memory area exported
by netmap.

select()/poll() are used for synchronization. Apart
from the disconnection in the data path, the operating
system is unaware of the change so it still continues to
use and manage the interface as during regular operation.

4.1 Data structures

The key component in the netmap architecture are the
data structures shown in Figure 4. They are designed
to provide the following features: 1) reduced/amortized
per-packet overheads; 2) efficient forwarding between
interfaces; 3) efficient communication between the NIC
and the host stack; and 4) support for multi-queue
adapters and multi core systems.

netmap supports these features by associating to each
interface three types of user-visible objects, shown in
Figure 4: packet buffers, netmap rings, and netmap if

descriptors. All objects for all netmap-enabled interfaces
in the system reside in the same memory region, allo-
cated by the kernel in a non-pageable area, and shared
by all user processes. The use of a single region is con-
venient to support zero-copy forwarding between inter-
faces, but it is trivial to modify the code so that different
interfaces or groups of interfaces use separate memory
regions, gaining better isolation between clients.

Since the shared memory is mapped by processes and
kernel threads in different virtual address spaces, any
memory reference contained in that region must use rel-

ative addresses, so that pointers can be calculated in a
position-independent way. The solution to this problem
is to implement references as offsets between the parent
and child data structures.

Packet buffers have a fixed size (2 Kbytes in the cur-
rent implementation) and are shared by the NICs and
user processes. Each buffer is identified by a unique in-

dex, that can be easily translated into a virtual address by
user processes or by the kernel, and into a physical ad-
dress used by the NIC’s DMA engines. Buffers for all
netmap rings are preallocated when the interface is put

5

Source: L. Rizzo. netmap: a novel framework for fast packet I/O. In Proceedings 
of the USENIX Annual Technical Conference, Boston, MA, USA, June 2012. 

pkt_buf objects form the circular 
buffer, and are in memory shared 
between NIC and application

netmap_ring provides index into the circular buffer; 
tracks current ownership of each pkt_buf 

netmap_if provides metadata about the interface
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Sample netmap Code

8

struct netmap_if *nifp;
struct nmreq req;
int i, len;
char *buf;

fd = open("/dev/netmap", 0);
strcpy(req.nr_name, "ix0"); // register the interface
ioctl(fd, NIOCREG, &req); // offset of the structure
mem = mmap(NULL, req.nr_memsize, PROT_READ|PROT_WRITE, 0, fd, 0);
nifp = NETMAP_IF(mem, req.nr_offset);
for (;;) {

struct pollfd x[1];
struct netmap_ring *ring = NETMAP_RX_RING(nifp, 0);

x[0].fd = fd;
x[0].events = POLLIN;
poll(x, 1, 1000);
for ( ; ring->avail > 0 ; ring->avail--) {

i = ring->cur;
buf = NETMAP_BUF(ring, i);
use_data(buf, ring->slot[i].len);
ring->cur = NETMAP_NEXT(ring, i);

}
}

Updates netmap_ring structure, based on the 
received data (ring->cur and ring->avail 
only, no data copied, no synchronisation)

Gets pointer to shared pkf_buf
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Benefits and Limitations of netmap

• Memory shared between NIC and application 
• Misbehaving applications can read memory owned by 

NIC – see unpredictable contents since DMA active in 
this region 

• Kernel data structures are protected – cannot crash the 
kernel or see other kernel data 

• Operates on granularity of network interface 
• Application has access to all traffic on netmap interface 

• Limited applicability – not a replacement for the TCP/IP 
stack, but well suited to network monitoring or software 
router implementation 

• Performance excellent – saturates 10Gbps 
Ethernet sending minimum size packets on 
900MHz CPU 
• Using minimum size packets requires highest packet 

rate → highest overhead 

• Similar performance receiving packets

9

but we want it to be as simple as possible in order to
reduce the interference on the measurement. Our ini-
tial tests then use two very simple programs that make
application costs almost negligible: a packet generator
which streams pre-generated packets, and a packet re-
ceiver which just counts incoming packets.

5.2 Test equipment

We have run most of our experiments on systems
equipped with an i7-870 4-core CPU at 2.93 GHz
(3.2 GHz with turbo-boost), memory running at
1.33 GHz, and a dual port 10 Gbit/s card based on the
Intel 82599 NIC. The numbers reported in this paper
refer to the netmap version in FreeBSD HEAD/amd64
as of April 2012. Experiments have been run using di-
rectly connected cards on two similar systems. Results
are highly repeatable (within 2% or less) so we do not
report confidence intervals in the tables and graphs.

netmap is extremely efficient so it saturates a 10 Gbit/s
interface even at the maximum packet rate, and we need
to run the system at reduced clock speeds to determine
the performance limits and the effect of code changes.
Our systems can be clocked at different frequencies,
taken from a discrete set of values. Nominally, most of
them are multiples of 150 MHz, but we do not know how
precise the clock speeds are, nor the relation between
CPU and memory/bus clock speeds.

The transmit speed (in packets per second) has been
measured with a packet generator similar to the one in
Section 4.2.3. The packet size can be configured at run-
time, as well as the number of queues and threads/cores
used to send/receive traffic. Packets are prepared in ad-
vance so that we can run the tests with close to zero per-
byte costs. The test program loops around a poll(), send-
ing at most B packets (batch size) per ring at each round.
On the receive side we use a similar program, except that
this time we poll for read events and only count packets.

5.3 Transmit speed versus clock rate

As a first experiment we ran the generator with variable
clock speeds and number of cores, using a large batch
size so that the system call cost is almost negligible. By
lowering the clock frequency we can determine the point
where the system becomes CPU bound, and estimate the
(amortized) number of cycles spent for each packet.

Figure 5 show the results using 1..4 cores and
an equivalent number of rings, with 64-byte packets.
Throughput scales quite well with clock speed, reach-
ing the maximum line rate near 900 MHz with 1 core.
This corresponds to 60-65 cycles/packet, a value which
is reasonably in line with our expectations. In fact, in this
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Figure 5: Netmap transmit performance with 64-byte
packets, variable clock rates and number of cores, com-
pared to pktgen (a specialised, in-kernel generator avail-
able on linux, peaking at about 4 Mpps) and a netsend
(FreeBSD userspace, peaking at 1.05 Mpps).

particular test, the per-packet work is limited to validat-
ing the content of the slot in the netmap ring and updating
the corresponding slot in the NIC ring. The cost of cache
misses (which do exist, especially on the NIC ring) is
amortized among all descriptors that fit into a cache line,
and other costs (such as reading/writing the NIC’s regis-
ters) are amortized over the entire batch.

Once the system reaches line rate, increasing the clock
speed reduces the total CPU usage because the generator
sleeps until an interrupt from the NIC reports the avail-
ability of new buffers. The phenomenon is not linear and
depends on the duration of the interrupt mitigation in-
tervals. With one core we measured 100% CPU load at
900 MHz, 80% at 1.2 GHz and 55% at full speed.

Scaling with multiple cores is reasonably good, but
the numbers are not particularly interesting because there
are no significant contention points in this type of ex-
periment, and we only had a small number of operating
points (1..4 cores, 150,300, 450 Mhz) before reaching
link saturation.

Just for reference, Figure 5 also reports the maximum
throughput of two packet generators representative of the
performance achievable using standard APIs. The line
at the bottom represents netsend, a FreeBSD userspace
application running on top of a raw socket. netsend
peaks at 1.05 Mpps at the highest clock speed. Figure 2
details how the 950 ns/pkt are spent.

The other line in the graph is pktgen, an in-kernel
packet generator available in Linux, which reaches al-
most 4 Mpps at maximum clock speed, and 2 Mpps at
1.2 GHz (the minimum speed we could set in Linux).
Here we do not have a detailed profile of how time is
spent, but the similarity of the device drivers and the ar-
chitecture of the application suggest that most of the cost

9

Source: L. Rizzo. netmap: a novel framework for fast packet I/O. In Proceedings 
of the USENIX Annual Technical Conference, Boston, MA, USA, June 2012. 
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StackMap: Accelerating TCP with netmap

• Key insight: the TCP/IP stack processing is not 
expensive – inefficiencies are primarily system 
call overheads, copying data, and Socket API 
limitations with large number of file descriptors 

• The netmap framework avoids the copies and 
reduces number of system calls, and gains in 
performance – but without the TCP/IP stack 

• StackMap integrates the Linux kernel TCP/IP 
stack with netmap 
• Uses kernel TCP/IP stack for the control place 

• Uses netmap for the data plane – new API 

• Like netmap, requires a dedicated network interface 
for each StackMap enabled application

10
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StackMap: Low-Latency Networking with the OS Stack and Dedicated NICs

Kenichi Yasukata†1, Michio Honda2, Douglas Santry2, and Lars Eggert2
1Keio University

2NetApp

Abstract
StackMap leverages the best aspects of kernel-bypass

networking into a new low-latency Linux network service
based on the full-featured TCP kernel implementation, by
dedicating network interfaces to applications and offering
an extended version of the netmap API as a zero-copy, low-
overhead data path while retaining the socket API for the
control path. For small-message, transactional workloads,
StackMap outperforms baseline Linux by 4 to 80 % in
latency and 4 to 391 % in throughput. It also achieves
comparable performance with Seastar, a highly-optimized
user-level TCP/IP stack for DPDK.

1 Introduction
The TCP/IP protocols are typically implemented as part of
an operating system (OS) kernel and exposed to applica-
tions through an application programming interface (API)
such as the socket API [61] standard. This protects and
isolates applications from one another and allows the OS
to arbitrate access to network resources. Applications can
focus on implementing their specific higher-level func-
tionality and need not deal with the details of network
communication.

A shared kernel implementation of TCP/IP has other
advantages. The commercialization of the Internet has
required continuous improvements to end-to-end data
transfers. A collaboration between commercial and open
source developers, researchers and IETF participants over
at least the last 25 years has been improving TCP/IP to
scale to increasingly diverse network characteristics [11,
39, 58], growing traffic volumes [13, 32], and improved
tolerance to throughput fluctuations and reduced transmis-
sion latencies [1, 10, 49].

A modern TCP/IP stack is consequently a complex,
highly optimized and analyzed piece of software. Due to
these complexities, only a small number of stacks (e.g.,

†Most of the research was done during an internship at NetApp.

Linux, Windows, Apple, BSD) have a competitive feature
set and performance, and therefore push the vast majority
of traffic. Because of this relatively small number of OS
stacks (compared to the number of applications), TCP/IP
improvements have a well-understood and relatively easy
deployment path via kernel updates, without the need to
change applications.

However, implementing TCP/IP in the kernel also has
downsides, which are becoming more pronounced with
larger network capacities and applications that are more
sensitive to latency and jitter. Kernel data processing
and queueing delays now dominate end-to-end latencies,
particularly over uncongested network paths. For example,
the fabric latency across a datacenter network is typically
only a few µs. But a minimal HTTP transaction over the
same fabric, consisting of a short “GET” request and an
“OK” reply, takes tens to hundreds of µs (see Section 3).

Several recent proposals attempt to avoid these over-
heads in a radical fashion: they bypass the kernel stack and
instead implement all TCP/IP processing inside the appli-
cation in user space [24, 29, 37] or in a virtual machine
context [4]. Although successful in avoiding overheads,
these kernel-bypass proposals also do away with many
of the benefits of a shared TCP/IP implementation: They
usually implement a simplistic flavor of TCP/IP that does
not include many of the performance optimizations of the
OS stacks, it is unclear if and by whom future protocol im-
provements would be implemented and deployed, and the
different TCP/IP versions used by different applications
may negatively impact one another in the network.

It is questionable whether kernel-bypass approaches
are suitable even for highly specialized network environ-
ments such as datacenters. Due to economic reasons [17],
they are assembled from commodity switches and do not
feature a centralized flow scheduler [2, 45]. Therefore,
path characteristics in such datacenters vary, and more
advanced TCP protocol features may be useful in order to
guarantee sub-millisecond flow completion times.
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StackMap Architecture

• Socket API for control: socket(), 
bind(), listen(), accept(), etc. 

• Netmap API used for data 
• STACKMAP_BUF() updates netmap’s 

circular buffer, and passes data through 
the TCP/IP stack for processing 

• StackMap manages the buffer pool 
• Circular buffer used by netmap 

• If packet must be stored for 
retransmission, its buffer is swapped out 
of the netmap ring and replaced by 
another from the pool, until needed 

• Zero copy – just swaps pointers; buffer is 
already shared between netmap, kernel, 
and application 

• Also manages scratchpad data structure, 
to simplify iteration over data from on 
multiple connections
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A second design principle is retaining isolation: al-
though StackMap assumes that applications are privileged
(they see all traffic on dedicated NICs), it must still pro-
tect the OS and any other applications when a privileged
StackMap application crashes. StackMap inherits most of
its protection mechanisms from netmap, which it is based
on, including protection of NIC registers and exclusive
ring buffer operations between the kernel and user space.
We discuss the limitations posed by our current prototype
in Section 6.

A third design principle is backwards compatibility:
when a NIC is dedicated to a StackMap application, reg-
ular applications must remain able to use other NICs.
StackMap achieves this by retaining part of the socket API
for control plane operations. Since today’s commodity
OSes mostly use monolithic kernels, StackMap must share
a single network stack instance across all NICs, whether
they are dedicated to privileged applications or shared
by regular applications. One implication of this design
principle is that it makes a complete shared-nothing design
difficult, i.e., some coordination remains required. How-
ever, Section 5 shows that this coordination overhead is
small. Additionally, the OS stack is increasingly being dis-
aggregated into shared objects, such as accept queues, and
StackMap will benefit from such improvements directly,
further improving future performance.

4.2 StackMap Architecture
The StackMap design centers around combining a fast
packet I/O framework with the OS TCP/IP stack, to give
application fast message-oriented communication over
TCP connections, which has been crucial for the applica-
tions like memcached, web servers and content delivery
network (CDN) servers, to name a few [7, 22]. Thus, in
addition to dedicating NICs to privileged applications,
StackMap must also enable the kernel stack to apply its
regular TCP/IP processing to those NICs. To this end,
StackMap extends the netmap framework to allow it to
efficiently integrate with the OS stack.

DPDK is not a suitable basis for StackMap, because
it executes its NIC drivers entirely in user space. It is
difficult to efficiently have such user-space NIC drivers
call into the kernel network stack.

Although netmap already supports communicating with
the OS stack [54], its current method has significant
overheads, because it is unoptimized and only focuses on
applications that use the socket API, which as we have
shown to have undesirable overheads.

Figure 2 illustrates the StackMap architecture.
StackMap (i) mediates traffic between a dedicated NIC
and a privileged application through a slightly extended
version of the netmap API; (ii) uses the kernel TCP/IP
stack to process incoming TCP packets and send outgoing

StackMap
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Stack port

OS Packet I/O

NIC port

Regular App.

Drivers, NICs NIC ringsNIC rings

Data path
Control path

rings/
slots

Buffer pool

Figure 2: StackMap architecture overview.

application data; (iii) and uses the regular socket API for
control, to both share the protocol/port-number space with
regular applications and to present a consistent picture of
clients and connections to the kernel.

For the data path API, the goal of StackMap is to
combine the efficiency, generality and security of the
netmap packet I/O framework with the full-fledged kernel
TCP/IP implementation, to give applications a way to
send and receive messages over TCP with much lower
overheads compared to the socket API.

These performance benefits will require an application
to more carefully manage and segment the data it is
handling. However, we believe that this is an acceptable
trade-off, at least for transactional applications that care
about message latencies rather than bulk throughput. In
addition, because StackMap retains the socket API for
control purposes, an application can also still use the
standard data plane syscalls e.g., read() and write()
(with the usual associated overheads).

4.3 Netmap Overview
Netmap [54] maintains several pools of uniquely-indexed,
pre-allocated packet buffers inside the kernel. Some of
these buffers are referenced by slots, which are contained
in rings. A set of rings forms a port. A NIC port maps
its rings to NIC hardware rings for direct packet buffer
access (Figure 2). A pipe port provides a zero-copy point-
to-point IPC channel [53]; a VALE port is a virtual NIC of
a VALE/mSwitch [23, 56] software switch instance (not
shown in Figure 2).

The netmap API provides a common interface to all
types of ports. It defines methods to manipulate rings and
uses poll() and ioctl() syscalls for synchronization
with the kernel, whose backend performs port-specific
operations, e.g., device I/O for NIC ports or packet for-
warding for VALE ports. Netmap buffers that are part
of the same pool are interchangeable between slots, even
across different rings or ports, which enables zero-copy
operations.

Source: K. Yasukata, M. Honda, D. Santry, and L. Eggert. StackMap: Low-
latency networking with the OS stack and dedicated NICs. In Proceedings 
of the USENIX Annual Technical Conference, Denver, CO, USA, June 2016.
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1 struct sockaddr_in sin = { AF_INET, "10.0.0.1", INADDR_ANY };
2 int sd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
3 bind(sd, &sin);
4 // prefix “stack” opens stack port for given interface
5 struct nm_desc ∗nmd = nm_open("stack:ix0");
6 connect(sd, dst_addr); /∗ non-blocking ∗/
7 // transmit using ring 0 only, for this example
8 struct netmap_ring ∗ring = NETMAP_TXRING(nmd->nifp, 0);
9 uint32_t cur = ring->cur;

10 while (app_has_data && cur != ring->tail) {
11 struct netmap_slot ∗slot = &ring->slot[cur];
12 char ∗buf = STACKMAP_BUF(ring, slot->buf_index);
13 // place payload in buf, then
14 slot->fd = sd;
15 cur = nm_ring_next(ring, cur);
16 }
17 ring->head = ring->cur = cur;
18 ioctl(nmd->fd, NIOCTXSYNC);

Figure 4: Initiating a connection and sending data.

4.5 StackMap API
In order to share the kernel TCP/IP stack with regular
applications, StackMap retains the socket API for control,
including, e.g., the socket(), bind(), listen() and
accept() syscalls. To reduce connection setup costs,
StackMap optionally can perform accept() in the kernel
before returning to user space, similar to MegaPipe [22].

The StackMap data path API has been designed to re-
semble the netmap API, except for a few extensions. One
is the STACKMAP_BUF(slot_idx, ring) macro, which
extends the netmap NETMAP_BUF(slot_idx, ring)
macro and returns a pointer to the beginning of the pay-
load data in a packet buffer. STACKMAP_BUF allows an
application to easily write and read payload data to and
from buffers, skipping the packet headers (which on TX
are filled in by the kernel).

On TX, the application must indicate the descriptor for
each slot to be transmitted, so that the OS stack can identify
the respective TCP connections. On RX, the OS stack
marks the slots accordingly, so that the application can
identify which connection the data belongs to. Figure 4
illustrates use of the StackMap API for opening a new
TCP connection and sending data in C-like pseudo code.

On RX, an application can consume data by simply
traversing the RX ring of a stack port. However, this
simple approach often does not integrate naturally into
existing applications, because they are written to iter-
ate over descriptors or connections, rather than iterating
over data in packet arrival order. Unfortunately, using
the epoll_wait() syscall is not an option because of
significant overheads shown in Section 3.2.

StackMap thus introduces a new API that allows ap-
plications to consume data more naturally, ordered by
descriptor. It is based on constructing a list of ready file
descriptors during network stack processing, as well as
grouping buffers for each descriptor, and by exploiting the
opportunity that the application synchronously calls into
the kernel network stack.

fd3 fd4fd6 fd4fd4fd3fd6
2536

0123456

Next slot

Slot index

0
1

3
5

4 6

head tail
Stack port RX ring Scratchpad

[fd3]
[fd4]

[fd6]
[fd5]

Descriptor Array

fd3
fd4

fd6

[0]
[1]
[2]

Figure 5: Algorithm to build an array of ready descriptors.

Figure 5 illustrates this algorithm with an example.
Here, the OS stack has identified packets 0, 2 and 3 to
belong to file descriptor 4 (fd4), packets 1 and 5 belong to
fd3, and packets 4 and 6 to fd6. Note that descriptors are
guaranteed to be unique per process. Each slot maintains
a “next slot” index that points to the next slot of the same
descriptor. StackMap uses a scratchpad table indexed
by descriptor to maintain the head and tail slot index for
each. The tail is used by the OS stack to append new
data to a particular descriptor, by setting the “next slot”
of the last packet to this descriptor, without having to
traverse the ring. The head is used by the application to
find the first packet for a particular descriptor, also without
having to traverse the ring. This algorithm is inspired by
mSwitch [23], and we expect similarly high performance
and scalability.

The scratchpad is a process-wide data structure which
requires 32 B (for two 16 B buffer indices) per entry,
and usually holds 1024 entries (the default per-process
maximum number of descriptors in Linux). We do not
consider the resulting size of 32 KB problematic on today’s
systems even if it was extended by one or two orders of
magnitude, but it would be possible to reduce this further
by dynamically managing the scratchpad (which would
incur some modest overhead).

When the first data for a particular descriptor is ap-
pended, StackMap also places the descriptor into a de-
scriptor array (see Figure 5) that is exposed to the applica-
tion. The application uses this array very similarly to how
it would use the array returned by epoll_wait(), but
without incurring the overhead of that syscall. Figure 6
illustrates how an application receives data and traverses
the RX ring by descriptor.

The current API allows an application to traverse an
RX ring both in packet-arrival order (i.e., without using
the descriptor array) and in descriptor order. In the future,
StackMap may sort buffers in descriptor order when
moving them into the stack port RX ring. This would
remove the ability to traverse in packet order, but greatly
simplifies the API and eliminates the need for exporting
the descriptor array and scratchpad to user space.

4.6 StackMap Implementation
In order to validate the StackMap architecture, we imple-
mented it in the Linux 4.2 kernel with netmap support.

8

Source: K. Yasukata, M. Honda, D. Santry, and L. Eggert. StackMap: Low-
latency networking with the OS stack and dedicated NICs. In Proceedings 
of the USENIX Annual Technical Conference, Denver, CO, USA, June 2016.

Sockets API used to initiate 
connection
The netmap API is used to send 
and receive data 

The STACKMAP_BUF() call is an 
extension that passes the data to 
the kernel TCP/IP stack, handles 
ACKs, retransmission, congestion 
control, etc. 
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StackMap Performance

• Linux with StackMap extensions outperforms standard Linux 

• Primary benefits are avoiding copies and better scaling with concurrent flows: 
performance benefit increases with response size and number of connections 

• Note: uses the full kernel TCP/IP stack – not a cut-down version – benefits due 
to new API, not reduced functionality
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Figure 7: Mean and 99th percentile round-trip latencies (top row), mean number of ready descriptors in each event
processing cycle (middle row) and throughputs (bottom row), with the number of concurrent TCP connections (horizontal
axis) for different response sizes (64, 512 and 1280 B).

Figure 8: Memcached latency and throughput results.

on 1024 B objects. While still simple, memcached has a
slightly more complex application logic than the simple
HTTP server we used for the previous benchmarks, and
therefore exhibits higher processing delays (see Table 2).

Figure 8 shows mean latencies with standard deviations,
as well as aggregate throughputs. StackMap achieves
significantly higher throughputs and lower latencies than
Linux, as well as a much smaller latency variance. This is
similar to observations earlier in this section. Surprisingly,
StackMap also slightly outperforms Seastar.

5.5 Memcached Multicore Scalability
Finally, we evaluate multi-core scalability with StackMap,
again using memcached as an application, and compares
the results against Linux and Seastar. The object size for

Figure 9: Memcached multi-core throughput.

this experiment is 64 B to prevent the network from becom-
ing saturated. In order to investigate the overheads and
scalability of memcached itself, we also compare against
the simple HTTP server used for our other measurements,
configured to also serve 64 B messages.

Figure 9 shows aggregate throughputs when using a
different number of CPU cores to serve the workload. Up
to six cores used, the relative performance differences
between Linux, Seastar and StackMap remain similar,
with Linux being slowest, and StackMap slightly outper-
forming Seastar. However, Seastar begins to outperform
the others at eight cores. StackMap and Linux retain their
relative performance difference. This is to be expected,
because the current StackMap implementation does not
yet optimize locking when the Linux TCP/IP operates in
StackMap mode, nor has memcached been modified to
remove such locks when used with StackMap. In contrast,
Seastar adopts a shared-nothing design, and memcached
on top of Seastar also has been highly optimized for
multi-core scalability. The inclusion of the simple HTTP
server results for StackMap attempt to illustrate its scal-

11
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Accelerating TCP: Other Approaches

• Numerous other attempts to accelerate TCP/IP 
stack processing exist: 
• Example: sandstorm builds on netmap; combines 

application, TCP/IP, and ethernet processing into a 
user-space library – builds highly optimised, special 
purpose, protocol stack for each application (see 
“Network Stack Specialization for Performance”) 

• Example: Google’s QUIC protocol aims to provide an 
alternative to TCP, with better performance, in a user 
space protocol running over UDP 

• … 

• No clear consensus on the right approach 
• API changes to batch packet processing and reduce 

copies are clearly beneficial – how general purpose 
the resulting API needs to be is unclear 

• Pervasive encryption may reduce the benefits – you 
need to make a copy while decrypting, and many of 
these approaches benefit from zero-copy stacks
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Abstract
Contemporary network stacks are masterpieces of generality, sup-
porting many edge-node and middle-node functions. Generality
comes at a high performance cost: current APIs, memory models,
and implementations drastically limit the effectiveness of increas-
ingly powerful hardware. Generality has historically been required
so that individual systems could perform many functions. How-
ever, as providers have scaled services to support millions of users,
they have transitioned toward thousands (or millions) of dedicated
servers, each performing a few functions. We argue that the over-
head of generality is now a key obstacle to effective scaling, making
specialization not only viable, but necessary.

We present Sandstorm and Namestorm, web and DNS servers
that utilize a clean-slate userspace network stack that exploits knowl-
edge of application-specific workloads. Based on the netmap frame-
work, our novel approach merges application and network-stack
memory models, aggressively amortizes protocol-layer costs based
on application-layer knowledge, couples tightly with the NIC event
model, and exploits microarchitectural features. Simultaneously, the
servers retain use of conventional programming frameworks. We
compare our approach with the FreeBSD and Linux stacks using
the nginx web server and NSD name server, demonstrating 2–10⇥
and 9⇥ improvements in web-server and DNS throughput, lower
CPU usage, linear multicore scaling, and saturated NIC hardware.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Architec-
ture and Design — Network communications

General Terms: Design, performance

Keywords: Network stacks; network performance; network-
stack specialization; clean-slate design

1. INTRODUCTION
Conventional network stacks were designed in an era where indi-

vidual systems had to perform multiple diverse functions. In the last

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCOMM’14, August 17–22, 2014, Chicago, Illinois, USA.
Copyright 2014 ACM 978-1-4503-2836-4/14/08 ...$15.00.
http://dx.doi.org/10.1145/2619239.2626311.

decade, the advent of cloud computing and the ubiquity of network-
ing has changed this model; today, large content providers serve
hundreds of millions of customers. To scale their systems, they are
forced to employ many thousands of servers, with each providing
only a single network service. Yet most content is still served with
conventional general-purpose network stacks.

These general-purpose stacks have not stood still, but today’s
stacks are the result of numerous incremental updates on top of code-
bases that were originally developed in the early 1990s. Arguably,
these network stacks have proved to be quite efficient, flexible, and
reliable, and this is the reason that they still form the core of contem-
porary networked systems. They also provide a stable programming
API, simplifying software development. But this generality comes
with significant costs, and we argue that the overhead of generality
is now a key obstacle to effective scaling, making specialization not
only viable, but necessary.

In this paper we revisit the idea of specialized network stacks.
In particular, we develop Sandstorm, a specialized userspace stack
for serving static web content, and Namestorm, a specialized stack
implementing a high performance DNS server. More importantly,
however, our approach does not simply shift the network stack to
userspace: we also promote tight integration and specialization of
application and stack functionality, achieving cross-layer optimiza-
tions antithetical to current design practices.

Servers such as Sandstorm could be used for serving images such
as the Facebook logo, as OCSP [20] responders for certificate revo-
cations, or as front end caches to popular dynamic content. This is
a role that conventional stacks should be good at: nginx [6] uses the
sendfile() system call to hand over serving static content to the
operating system. FreeBSD and Linux then implement zero-copy
stacks, at least for the payload data itself, using scatter-gather to di-
rectly DMA the payload from the disk buffer cache to the NIC. They
also utilize the features of smart network hardware, such as TCP
Segmentation Offload (TSO) and Large Receive Offload (LRO) to
further improve performance. With such optimizations, nginx does
perform well, but as we will demonstrate, a specialized stack can
outperform it by a large margin.

Namestorm is aimed at handling extreme DNS loads, such as
might be seen at the root nameservers, or when a server is under
a high-rate DDoS attack. The open-source state of the art here is
NSD [5], which combined with a modern OS that minimizes data
copies when sending and receiving UDP packets, performs well.
Namestorm, however, can outperform it by a factor of nine.

Our userspace web server and DNS server are built upon
FreeBSD’s netmap [31] framework, which directly maps the NIC
buffer rings to userspace. We will show that not only is it possible for
a specialized stack to beat nginx, but on data-center-style networks
when serving small files typical of many web pages, it can achieve
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Conclusions

• Improvements to network performance relative to CPU performance 
highlight limitations of Sockets API for high performance – ongoing 
work to find good new APIs 

• Beware: it’s very hard to beat TCP – incredibly well tuned, secure, 
and well maintained 
• TCP highly optimised over many years – handles edge cases in security and 

congestion control that are non-obvious  
• IETF RFC 7414 (“A Roadmap for TCP Specification Documents”) is 55 pages, and 

references 150 other documents – textbook explanations of TCP omit much important 
detail 

• Likely better to optimise kernel TCP stack and API, than end up stuck on a 
poorly maintained user-space stack
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Further Reading
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Abstract

Many applications (routers, traffic monitors, firewalls,
etc.) need to send and receive packets at line rate even on
very fast links. In this paper we present netmap, a novel
framework that enables commodity operating systems
to handle the millions of packets per seconds traversing
1..10 Gbit/s links, without requiring custom hardware or
changes to applications.

In building netmap, we identified and successfully re-
duced or removed three main packet processing costs:
per-packet dynamic memory allocations, removed by
preallocating resources; system call overheads, amor-
tized over large batches; and memory copies, elimi-
nated by sharing buffers and metadata between kernel
and userspace, while still protecting access to device reg-
isters and other kernel memory areas. Separately, some
of these techniques have been used in the past. The nov-
elty in our proposal is not only that we exceed the perfor-
mance of most of previous work, but also that we provide
an architecture that is tightly integrated with existing op-
erating system primitives, not tied to specific hardware,
and easy to use and maintain.

netmap has been implemented in FreeBSD and Linux
for several 1 and 10 Gbit/s network adapters. In our pro-
totype, a single core running at 900 MHz can send or
receive 14.88 Mpps (the peak packet rate on 10 Gbit/s
links). This is more than 20 times faster than conven-
tional APIs. Large speedups (5x and more) are also
achieved on user-space Click and other packet forward-
ing applications using a libpcap emulation library run-
ning on top of netmap.

∗This work was funded by the EU FP7 project CHANGE (257422).
†USENIX plans to publish this paper on the Proceedings

of the 2012 USENIX Annual Technical Conference, which will
be available at this URL after June 13, 2012. You may
also find this paper, with related material, on the author’s site,
http://info.iet.unipi.it/ luigi/netmap/

1 Introduction

General purpose OSes provide a rich and flexible envi-
ronment for running, among others, many packet pro-
cessing and network monitoring and testing tasks. The
high rate raw packet I/O required by these applica-
tions is not the intended target of general purpose OSes.
Raw sockets, the Berkeley Packet Filter [14] (BPF), the
AF SOCKET family, and equivalent APIs have been
used to build all sorts of network monitors, traffic gen-
erators, and generic routing systems. Performance, how-
ever, is inadequate for the millions of packets per sec-
ond (pps) that can be present on 1..10 Gbit/s links. In
search of better performance, some systems (see Sec-
tion 3) either run completely in the kernel, or bypass the
device driver and the entire network stack by exposing
the NIC’s data structures to user space applications. Ef-
ficient as they may be, many of these approaches depend
on specific hardware features, give unprotected access to
hardware, or are poorly integrated with the existing OS
primitives.

The netmap framework presented in this paper com-
bines and extends some of the ideas presented in the
past trying to address their shortcomings. Besides giving
huge speed improvements, netmap does not depend on
specific hardware1, has been fully integrated in FreeBSD
and Linux with minimal modifications, and supports un-
modified libpcap clients through a compatibility library.

One metric to evaluate our framework is performance:
in our implementation, moving one packet between the
wire and the userspace application has an amortized cost
of less than 70 CPU clock cycles, which is at least one
order of magnitude faster than standard APIs. In other
words, a single core running at 900 MHz can source or
sink the 14.88 Mpps achievable on a 10 Gbit/s link. The
same core running at 150 MHz is well above the capacity

1netmap can give isolation even without hardware mechanisms such
as IOMMU or VMDq, and is orthogonal to hardware offloading and
virtualization mechanisms (checksum, TSO, LRO, VMDc, etc.)
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Abstract
StackMap leverages the best aspects of kernel-bypass

networking into a new low-latency Linux network service
based on the full-featured TCP kernel implementation, by
dedicating network interfaces to applications and offering
an extended version of the netmap API as a zero-copy, low-
overhead data path while retaining the socket API for the
control path. For small-message, transactional workloads,
StackMap outperforms baseline Linux by 4 to 80 % in
latency and 4 to 391 % in throughput. It also achieves
comparable performance with Seastar, a highly-optimized
user-level TCP/IP stack for DPDK.

1 Introduction
The TCP/IP protocols are typically implemented as part of
an operating system (OS) kernel and exposed to applica-
tions through an application programming interface (API)
such as the socket API [61] standard. This protects and
isolates applications from one another and allows the OS
to arbitrate access to network resources. Applications can
focus on implementing their specific higher-level func-
tionality and need not deal with the details of network
communication.

A shared kernel implementation of TCP/IP has other
advantages. The commercialization of the Internet has
required continuous improvements to end-to-end data
transfers. A collaboration between commercial and open
source developers, researchers and IETF participants over
at least the last 25 years has been improving TCP/IP to
scale to increasingly diverse network characteristics [11,
39, 58], growing traffic volumes [13, 32], and improved
tolerance to throughput fluctuations and reduced transmis-
sion latencies [1, 10, 49].

A modern TCP/IP stack is consequently a complex,
highly optimized and analyzed piece of software. Due to
these complexities, only a small number of stacks (e.g.,

†Most of the research was done during an internship at NetApp.

Linux, Windows, Apple, BSD) have a competitive feature
set and performance, and therefore push the vast majority
of traffic. Because of this relatively small number of OS
stacks (compared to the number of applications), TCP/IP
improvements have a well-understood and relatively easy
deployment path via kernel updates, without the need to
change applications.

However, implementing TCP/IP in the kernel also has
downsides, which are becoming more pronounced with
larger network capacities and applications that are more
sensitive to latency and jitter. Kernel data processing
and queueing delays now dominate end-to-end latencies,
particularly over uncongested network paths. For example,
the fabric latency across a datacenter network is typically
only a few µs. But a minimal HTTP transaction over the
same fabric, consisting of a short “GET” request and an
“OK” reply, takes tens to hundreds of µs (see Section 3).

Several recent proposals attempt to avoid these over-
heads in a radical fashion: they bypass the kernel stack and
instead implement all TCP/IP processing inside the appli-
cation in user space [24, 29, 37] or in a virtual machine
context [4]. Although successful in avoiding overheads,
these kernel-bypass proposals also do away with many
of the benefits of a shared TCP/IP implementation: They
usually implement a simplistic flavor of TCP/IP that does
not include many of the performance optimizations of the
OS stacks, it is unclear if and by whom future protocol im-
provements would be implemented and deployed, and the
different TCP/IP versions used by different applications
may negatively impact one another in the network.

It is questionable whether kernel-bypass approaches
are suitable even for highly specialized network environ-
ments such as datacenters. Due to economic reasons [17],
they are assembled from commodity switches and do not
feature a centralized flow scheduler [2, 45]. Therefore,
path characteristics in such datacenters vary, and more
advanced TCP protocol features may be useful in order to
guarantee sub-millisecond flow completion times.
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