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Lecture Outline

 Limitations of the kernel protocol stack
o Alternative network stacks
e Accelerating TCP via APl improvements

e Some cautionary remarks
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Network Performance Growth

e Network performance is increasing 40000
faster than CPU performance
» Chart shows Ethernet bit rate over time 2 30000
— wireless links follow a similar curve =
 Closely tracking exponential growth 2
over time — unlike CPU speed, which = 20000
stopped growing significantly B
mid-2000s 5
_ £ 10000
e MTU remains constant — packet
rate increases
. 0
e Maximum 14,880,952 packets/second 1990 1994 1998 2002 2006 2010 2014

on 10Gbps Ethernet (scales linearly

D
with link rate) ate

 Minimum size packet is 60 bytes data,
with 8 byte preamble, 4 byte CRC; 12
byte inter-frame gap (silent period)
between packets

e CPU cycles available to process
each packet decreasing
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Limitations of the Kernel Protocol Stack

 Why does the traditional kernel protocol
stack offer sub-optimal performance?

e Designed when CPUs were faster than
networks

» Allocates memory for buffers on per-packet
basis

e (Copies data multiple times, from NIC (“network
interface card”) to kernel to application

o System call to send/receive each packet

» Layered architecture offers clean design, but not
efficient packet processing

 Example on right: timing of a sendto() system call
on FreeBSD: 950ns total; overheads at each layer
boundary due to system call, copies, etc.

 How to redesign the protocol stack to
reduce overheads?

File Function/description time | delta
ns ns
user program sendto 8 96
system call
uipc_syscalls.c | sys_sendto 104
uipc_syscalls.c | sendit 111
uipc_syscalls.c | kern_sendit 118
uipc_socket.c sosend —
uipc_socket.c sosend_dgram 146 137
sockbuf locking, mbuf
allocation, copyin
udp_usrreq.c udp_send 273
udp_usrreq.c udp_output 273 57
ip_output.c ip_output 330 198
route lookup, ip header
setup
if_ethersubr.c ether_output 528 162
MAC header lookup and
copy, loopback
if_ethersubr.c ether_output_frame 690
ixgbe.c ixgbe_mqg_start 698
ixgbe.c ixgbe_mqg_start_locked| 720
ixgbe.c ixgbe_xmit 730 220
mbuf mangling, device
programming
— on wire 950
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An Alternative Network Stack: netmap

e Changes network APl — a mechanism to give an
application dedicated control of a NIC
 Areplacement for 1ibpcap, not the Sockets API

e Basis for fast packet capture applications; software router;
user-space protocol stack — not general purpose

 Pre-allocate buffers, that are shared between OS
and user application; coordinate buffer ownership

* No memory allocation at time the packets are sent/received

* No data copies — DMA direct to application accessible
memory

* Fewer system calls — one system call can transfer
ownership of multiple buffers between application and kernel

* NIC uses efficient DMA to transfer packets to and
from memory; kernel manages synchronisation and
memory protection

» Kernel is the control plane
 NIC and DMA transfer manage the data plane

netmap: a novel framework for fast packet I/O

Luigi Rizzo, Universita di Pisa, Italy*
Proceedings of the 2012 USENIX Annual Technical Conference, June 2012.
https://www.usenix.org/conference/atc12/

Abstract

Many applications (routers, traffic monitors, firewalls,
etc.) need to send and receive packets at line rate even on
very fast links. In this paper we present netmap, a novel
framework that enables commodity operating systems
to handle the millions of packets per seconds sing
1..10 Gbit/s links, without requiring custom hardware or
changes to applications.

In building netmap, we identified and succes
duced or removed three main packet pro

preallocating resourc
tized over large batches; and memory copies, elimi-
nated by sharing buffers and metadata between kernel
and userspace, while still protecting access to device reg-
isters and other kernel memory areas. Separately, some
of these techniques have been used in the past. The nov-
elty in our propos not only that we exceed the perfor-
mance of most of previous work, but also that we provide
an architecture that is tightly integrated with existing op-
erating system primitives, not tied to specific hardware,
and easy to use and maintain.

netmap has been implemented in FreeBSD and Linux
for several 1 and 10 Gbit/s network adapters. In our pro-
totype, a single core running at 900 MHz can send or
receive 14.88 Mpps (the peak packet rate on 10 Gbit/s
links). This is more than 20 times faster than conven-
tional APIs. Large speedups (5x and more) are also
achieved on user-space Click and other packet forward-
ing applications using a libpcap ion library run-
ning on top of netmap.

“This work was funded by the EU FP7 project CHANGE (257422).

USENIX plans to publish this paper on the Proceedings
of the 2012 USENIX Annual Technical Conference, which will
be available at this URL after June 13, 2012.  You may
also find this paper, with related material, on the author’s site,
http://info.iet.unipi.it/ luigi/netnap/

1 Introduction

General purpose OSes provide a rich and flexible envi-
ronment for running, among others, many packet pro-
cessing and network monitoring and testing tasks. The
high rate raw packet /O required by these applica-
tions is not the intended target of general purpose OSes.
Raw sockets, the Berkeley Packet Filter [14] (BPF), the
AF_SOCKET family, and equivalent APIs have been
used to build all sorts of network monitors, traffic gen-
erators, and generic routing systems. Performance, how-
ever, is inadequate for the millions of packets per sec-
ond (pps) that can be present on 1..10 Gbit/s links. In
search of better performance, some systems (see Sec-
tion 3) either run completely in the kernel, or bypass the
device driver and the entire network stack by exposing
the NIC’s data structures to user space applications. Ef-
ficient as they may be, many of these approaches depend
on specific hardware features, give unprotected access to
hardware, or are poorly integrated with the existing OS
primitives.

The netmap framework presented in this paper com-
bines and extends some of the ideas presented in the
past trying to address their shortcomings. Besides giving
huge speed improvements, netmap does not depend on
specific hardware!, has been fully integrated in FreeBSD
and Linux with minimal modifications, and supports un-
modified libpcap clients through a compatibility library.

One metric to evaluate our framework is performance:
in our implementation, moving one packet between the
wire and the usersp: application has an amortized cost
of less than 70 CPU clock cycles, which is at least one
order of magnitude faster than standard APIs. In other
words, a single core running at 900 MHz can source or
sink the 14.88 Mpps achievable on a 10 Gbit/s link. The
same core running at 150 MHz is well above the capacity

I netmap can give isolation even without hardware mechanisms such
as IOMMU or VMDg, and is orthogonal to hardware offloading and
virtualization mechanisms (checksum, TSO, LRO, VMDc, etc.)

L. Rizzo. netmap: a novel framework for
fast packet I/0. In Proceedings of the
USENIX Annual Technical Conference,
Boston, MA, USA, June 2012.
https://www.usenix.org/conference/atc12/

technical-sessions/presentation/rizzo

(paper and video of presentation)
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Shared Ownership of NIC Buffers (1)

Ownership maintained
by NIC and DMA

Ownership granted

to application

* Modern NICs maintain circular
buffers sized to hold queues of full
size packets

NIC writes incoming packets direct to
one segment of ring buffer via DMA

Operating system copies from other
segment into lower layer of protocol
stack — first of several copies

If using netmap — OS disconnected;
ownership of ring buffer segment is
temporarily granted to application to
process packets in place

(Analogous for outgoing packets)
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Shared Ownership of NIC Buffers (2)

é netmap _if netmap rings 2\ NIC ring
num_rings ' ring size T f_ﬁhy_addr
. &5 en
ring_ofs []J/ cur = - AF
avail pkt_buf [
= [ flags
buf_ofs
flags | len | index|
] § pkt_buf
A pkt_buf
A
|
A A N
g Shared memory region pkt_buf objec_ts form the circular
: - buffer, and are in memory shared
between NIC and application

netmap ring provides index into the circular buffer;
tracks current ownership of each pkt buf

------------
.......
"y
Ny
u,

"netmap if provides metadata about the interface
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Sample netmap Code

struct netmap if *nifp;
struct nmreq req;

int
cha

fd

str
ioc
mem

i, len;
r *buf;
= open("/dev/netmap", 0);
cpy(req.nr name, "ix0"); // register the interface

tl(fd, NIOCREG, &req); // offset of the structure
= mmap (NULL, req.nr memsize, PROT_READ|PROT_WRITE, 0, £d, 0);

nifp = NETMAP IF(mem, req.nr offset);

for

(77) A
struct pollfd x[1l];
struct netmap ring *ring = NETMAP RX RING(nifp, 0);

k., Updates netmap ring structure, based on the
x[0].£d = £d; T received data (ring->cur and ring->avail
x[0].events = POLLIN; only, no data copied, no synchronisation)

poll(x, 1, 1000);
for ( ; ring->avail > 0 ; ring->avail--) {
1 = FING=>CUL; guememsrrrssssssmmmmmssssssmsss e, Gets pointer to shared pkf buf
buf = NETMAP BUF(ring, i);
use data(buf, ring->slot[i].len);
ring->cur = NETMAP NEXT(ring, 1i);
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Benefits and Limitations of netmap

e Memory shared between NIC and application

e Misbehaving applications can read memory owned by
NIC — see unpredictable contents since DMA active in
this region

e Kernel data structures are protected — cannot crash the
kernel or see other kernel data

e QOperates on granularity of network interface

e Application has access to all traffic on netmap interface

e Limited applicability — not a replacement for the TCP/IP
stack, but well suited to network monitoring or software
router implementation

16 ]
1Tmﬂ1111111'!|mml|-IIIIIIIlIIlIIIIIIIIIIIIIIIIIlIIIIIIIIIIIIIIIIIIIIIlIIIIIIIIIIIIIIIIII
14 ;
o 12 $
e Performance excellent — saturates 10Gbps S 1o | § netmap on 4 cores me |
. . . = & netmap on 2 cores
Ethernet sending minimum size packets on A “etmae,ﬁ;}gkfggﬁ |
900MHz CPU E i I f FreeBSD/netsend |
|_ mum\mmmmmumummmmnunmm\unﬂ
P USin g minimum Si Ze p a CketS re qUireS hi gh e St p a Ck et 2 | & .mmm\mmnu\\mmmmmnmnmn
. O | i i
rate — highest overhead 6 05 1 15 =2 25 3
e Similar performance receiving packets Clock speed (GHz)
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StackMap: Accelerating TCP with netmap

e Key insight: the TCP/IP stack processing is not
expensive — inefficiencies are primarily system
call overheads, copying data, and Socket API
limitations with large number of file descriptors

 The netmap framework avoids the copies and
reduces number of system calls, and gains in
performance — but without the TCP/IP stack

e StackMap integrates the Linux kernel TCP/IP
stack with netmap

o Uses kernel TCP/IP stack for the control place
e Uses netmap for the data plane — new API
o Like netmap, requires a dedicated network interface

StackMap: Low-Latency Networking with the OS Stack and Dedicated NICs

Kenichi Yasukata®!, Michio Honda?, Douglas Santry?, and Lars Eggert>
Keio University
2NetApp

Abstract

StackMap leverages the best aspects of kernel-bypass
networking into a new low-latency Linux network service
based on the full-featured TCP kernel implementation, by
dedicating network interfaces to applications and offering
an extended version of the netmap API as a zero-copy, low-
overhead data path while retaining the socket API for the
control path. For small-message, transactional workloads,
StackMap outperforms baseline Linux by 4 to 80 % in
latency and 4 to 391 % in throughput. It also achieves
comparable performance with Seastar, a highly-optimized
user-level TCP/IP stack for DPDK.

1 Introduction

The TCP/IP protocols are typically implemented as part of
an operating system (OS) kernel and exposed to applica-
tions through an application programming interface (API)
such as the socket API [61] standard. This protects and
isolates applications from one another and allows the OS
to arbitrate access to network resources. Applications can
focus on implementing their specific higher-level func-
tionality and need not deal with the details of network
communication.

A shared kernel implementation of TCP/IP has other
advantages. The commercialization of the Internet has
required continuous improvements to end-to-end data
transfers. A collaboration between commercial and open
source developers, researchers and IETF participants over
at least the last 25 years has been improving TCP/IP to
scale to increasingly diverse network characteristics [11,
39, 58], growing traffic volumes [13, 32], and improved
tolerance to throughput fluctuations and reduced transmis-
sion latencies [1, 10, 49].

A modern TCP/IP stack is consequently a complex,
highly optimized and analyzed piece of software. Due to
these complexities, only a small number of stacks (e.g.,

"Most of the research was done during an internship at NetApp.

Linux, Windows, Apple, BSD) have a competitive feature
set and performance, and therefore push the vast majority
of traffic. Because of this relatively small number of OS
stacks (compared to the number of applications), TCP/IP
improvements have a well-understood and relatively easy
deployment path via kernel updates, without the need to
change applications.

However, implementing TCP/IP in the kernel also has
downsides, which are becoming more pronounced with
larger network capacities and applications that are more
sensitive to latency and jitter. Kernel data processing
and queueing delays now dominate end-to-end latencies,
particularly over uncongested network paths. For example,
the fabric latency across a datacenter network is typically
only a few ps. But a minimal HTTP transaction over the
same fabric, consisting of a short “GET” request and an

“OK” reply, takes tens to hundreds of us (see Section 3).

Several recent proposals attempt to avoid these over-
heads in a radical fashion: they bypass the kernel stack and
instead implement all TCP/IP processing inside the appli-
cation in user space [24, 29, 37] or in a virtual machine
context [4]. Although successful in avoiding overheads,
these kernel-bypass proposals also do away with many
of the benefits of a shared TCP/IP implementation: They
usually implement a simplistic flavor of TCP/IP that does
not include many of the performance optimizations of the
OS stacks, it is unclear if and by whom future protocol im-
provements would be implemented and deployed, and the
different TCP/IP versions used by different applications
may negatively impact one another in the network.

It is questionable whether kernel-bypass approaches
are suitable even for highly specialized network environ-
ments such as datacenters. Due to economic reasons [17],
they are assembled from commodity switches and do not
feature a centralized flow scheduler [2, 45]. Therefore,
path characteristics in such datacenters vary, and more
advanced TCP protocol features may be useful in order to
guarantee sub-millisecond flow completion times.

USENIX Association

2016 USENIX Annual Technical Conference 43

————

K. Yasukata, M. Honda, D. Santry, and L. Eggert.
StackMap: Low-latency networking with the OS stack
and dedicated NICs. In Proceedings of the USENIX
Annual Technical Conference, Denver, CO, USA,

June 2016. https://www.usenix.org/conference/atc16/
technical-sessions/presentation/yasukata

for each StackMap enabled application
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StackMap Architecture

< Data path * Socket API for control: socket (),

Regular App. StackMap App. -
ﬁ ______ I ___h T tomelpem bind(), listen(), accept(), etc.
Socket API netmap
cameworkiapl | ¢ Netmap APl used for data
Stack port NIC port e STACKMAP BUF () updates netmap’s
TCP/IP/Ethernet 4—»@4—»@2% circular buffer, and passes data through
StackMap 1 the TCP/IP stack for processing
Buffer pool
OS Packet /O e StackMap manages the buffer pool
NIC rings Drivers, NICs NIC rings

e Circular buffer used by netmap

o If packet must be stored for
retransmission, its buffer is swapped out
of the netmap ring and replaced by
another from the pool, until needed

e Zero copy — just swaps pointers; buffer is
already shared between netmap, kernel,
and application

 Also manages scratchpad data structure,
to simplify iteration over data from on
multiple connections

11
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StackMap API

Y e Y e Tl e N e G S Gy S S S
CONN NP WNOROOOIDNWDN K W —

struct sockaddr_in sin = { AF_INET, "10.0.0.1", INADDR_ANY };-

int sd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
bind(sd, &sin);
// prefix “stack’ opens stack port for given interface
struct nm_desc :#nmd = nm_open("stack:ix0");
connect(sd, dst_addr); /* non-blocking =/
// transmit using ring 0 only, for this example
struct netmap_ring *ring = NETMAP_TXRING(nmd->nifp, 0);
uint32_t cur = ring->cur;
while (app_has_data && cur != ring->tail) {
struct netmap_slot :slot = &ring->slot[cur];
char :xbuf = STACKMAP_BUF (ring, slot->buf_index);
// place payload in buf, then v,
slot->fd = sd;
cur = nm_ring_next(ring, cur);
}
ring->head = ring->cur = cur;
ioctl(nmd->fd, NIOCTXSYNC);

Sockets APl used to initiate
connection

The netmap API is used to send
_and receive data

The STACKMAP BUF () callis an
extension that passes the data to
the kernel TCP/IP stack, handles
ACKs, retransmission, congestion
control, etc.

12
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StackMap Performance

? 8 o L | | | | ? 8 I | | | ? 8 I I I I 5¢ :
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@ 6F X- StackMap - . 8 G F - 6 6 e )(,x ---------------------------------- -
E ‘5 5 7 D
QU [ . QU [ " a4
Jo;o %;n o X- X— =X= =X— =X- =X- =X =X ED
© 2 7 22 S ammn TR D D2, g
ﬁog_a)(—'x'_%__x__é__é_é_é_é_% ﬁo I ] ] ] ﬁo ] ] ] ]
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Concurrent TCP Connections Concurrent TCP Connections Concurrent TCP Connections
64 B Response Size 512 B Response Size 1280 B Response Size

e Linux with StackMap extensions outperforms standard Linux

* Primary benefits are avoiding copies and better scaling with concurrent flows:
performance benefit increases with response size and number of connections

e Note: uses the full kernel TCP/IP stack — not a cut-down version — benefits due
to new API, not reduced functionality

13
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Accelerating TCP: Other Approaches

e Numerous other attempts to accelerate TCP/IP

stack processing exist:

« Example: sandstorm builds on netmap; combines
application, TCP/IP, and ethernet processing into a
user-space library — builds highly optimised, special
purpose, protocol stack for each application (see
“Network Stack Specialization for Performance”

 Example: Google’'s QUIC protocol aims to provide an
alternative to TCP, with better performance, in a user
space protocol running over UDP

No clear consensus on the right approach

Network Stack Specialization for Performance

Mark Handley
University College London

llias Marinos Robert N.M. Watson
University of Cambridge University of Cambridge
llia: il m.ac.uk Robert.

Abstract

Contemporary network stacks are masterpieces of generality, sup-
porting many edge-node and middle-node functions. Generality
comes at a high performance cost: current APIs, memory models,
and implementations drastically limit the effectiveness of increas-
ingly powerful hardware. Generality has historically been required
so that individual systems could perform many functions. How-
ever, as providers have scaled services to support millions of users,
they have transitioned toward thousands (or millions) of dedicated
servers, each performing a few functions. We argue that the over-
head of generality is now a key obstacle to effective scaling, making
specialization not only viable, but necessary.

We present Sandstorm and Namestorm, web and DNS servers
that utilize a clean-slate userspace network stack that exploits knowl-
edge of application-specific workloads. Based on the netmap frame-
work, our novel approach merges application and network-stack
memory models, aggressivel protocol-layer costs based
on application-layer knowledge, couples tightly with the NIC event
model, and exploits microarchitectural features. Simultancously, the

cam.ac.uk M.Handley@cs.ucl.ac.uk

decade, the advent of cloud computing and the ubiquity of network-
ing has changed this model; today, large content providers serve
hundreds of millions of customers. T
forced to employ many thousands of servers, with each providing
only a single network service. Yet most content is still served with
conventional general-purpose network stacks.
hese general-purpose stacks have not stood still, but today’s
stacks are the result of numerous incremental updates on top of code-
bases that were originally developed in the early 1990s. Arguably
these network stacks have proved to be quite efficient, flexible, and
reliable, and this is the reason that they still form the core of contem-
porary networked systems. They also provide a stable programming
API, simplifying software development. But this generality comes
with significant costs, and we argue that the overhead of generality
is now a key obstacle to effective scaling, making specialization not
only viable, but nece:
In this paper we revisit the idea of specialized network stacks.
In particular, we develop Sandstorm, a specialized userspace stack
static web content, and Namestorm, a specialized stack
ing a high DNS server. More importantly,

5

ary.

servers retain use of We
compare our approach with the FreeBSD and Linux stacks using
the nginx web server and NSD name server, demonstrating 2-10x
and 9 improvements in web-server and DNS throughput, lower
CPU usage, linear multicore scaling, and saturated NIC hardware.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network Architec-
ture and Design — Nenwork communications

General Terms: Design, performance

Keywords: Network stacks; network performance; network-
stack specialization; clean-slate design

1. INTRODUCTION
Conventional network stacks were designed in an era where indi-
vidual systems had to perform multiple diverse functions. In the last

Permission to make digital or hard copies of all or part of this work for personl or

classroom use s granted without fee provided that copies are not mad or distributed

for profit or commervial advantage and that copies bear t ¢ and the fullcitation
on the first page. Copyrights for componcnts of this work owned by others than ACM.

acting is permitted. To copy or republish
10 post o servers or to redistribute to lsts, requires prior specific permission and/or a
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however, our approach does not simply shift the network stack to
userspace: we also promote tight integration and specialization of
application and stack functionality, achieving cross-layer optimiza-
tions antithetical to current design practices.

Servers such as Sandstorm could be used for serving images such
as the Facebook logo, as OCSP [20] responders for certificate revo-
cations, or as front end caches to popular dynamic content. This is
arole that conventional stacks should be good at: nginx [6] uses the
sendfile () system call to hand over serving static content to the
operating system. FreeBSD and Linux then implement zero-copy
stacks, at least for the payload data itself, using scatter-gather to di-
rectly DMA the payload from the disk buffer cache to the NIC. They
also utilize the features of smart network hardware, such as TCP
Segmentation Offload (TSO) and Large Receive Offload (LRO) to
further improve performance. With such optimizations, nginx does
perform well, but as we will demonstrate, a specialized stack can
outperform it by a large margin.

Namestorm is aimed at handling extreme DNS loads, such as
might be seen at the oot nameservers, or when a sef under
a high-rate DDoS attack. The open-source state of the art here is
NSD (5], which combined with a modern OS that minimizes data
copies when sending and receiving UDP packets, performs well
Namestorm, however, can outperform it by a factor of nine.

Our userspace web server and DNS server are built upon
FreeBSD’s netmap [31] framework, which directly maps the NIC
buffer rings to userspace. We will show that not only is it possible for
a specialized stack to beat nginx, but on data-center-style networks
rving small files typical of many web pages, it can achieve

I. Marinos, R. N. M. Watson, and M. Handley. Network
stack specialization for performance. Proceedings of
the SIGCOMM Conference, Chicago, IL, USA, August
2014. ACM. DOI: 10.1145/2619239.2626311 (Open
access via http://dl.acm.org/authorize?N71202)

e API changes to batch packet processing and reduce
copies are clearly beneficial — how general purpose
the resulting API needs to be is unclear

e Pervasive encryption may reduce the benefits — you
need to make a copy while decrypting, and many of
these approaches benefit from zero-copy stacks
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Conclusions

* Improvements to network performance relative to CPU performance
highlight limitations of Sockets API for high performance — ongoing
work to find good new APls

 Beware: it's very hard to beat TCP — incredibly well tuned, secure,
and well maintained

e TCP highly optimised over many years — handles edge cases in security and
congestion control that are non-obvious

« |IETF RFC 7414 (A Roadmap for TCP Specification Documents”) is 55 pages, and
references 150 other documents — textbook explanations of TCP omit much important
detalil

o Likely better to optimise kernel TCP stack and API, than end up stuck on a
poorly maintained user-space stack
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Further Readin

netmap: a novel framework for fast packet I/O

Luigi Rizzo, Universita di Pisa, Italy*
Proceedings of the 2012 USENIX Annual Technical Conference, June 2012.
https://www.usenix.org/conference/atc12/ '

Abstract

Many applications (routers, traffic monitors, firewalls,
etc.) need to send and receive packets at line rate even on
very fast links. In this paper we present nefmap, a novel
framework that enables commodity operating systems
to handle the millions of packets per seconds traversing
1..10 Gbit/s links, without requiring custom hardware or
changes to applications.

In building netmap, we identified and successfully re-
duced or removed three main packet processing costs:
per-packet dynamic memory allocations, removed by
preallocating resources; system call overheads, amor-
tized over large batches; and memory copies, elimi-
nated by sharing buffers and metadata between kernel
and userspace, while still protecting access to device reg-
isters and other kernel memory areas. Separately, some
of these techniques have been used in the past. The nov-
elty in our proposal is not only that we exceed the perfor-
mance of most of previous work, but also that we provide
an architecture that is tightly integrated with existing op-
erating system primitives, not tied to specific hardware,
and easy to use and maintain.

netmap has been implemented in FreeBSD and Linux
for several 1 and 10 Gbit/s network adapters. In our pro-
totype, a single core running at 900 MHz can send or
receive 14.88 Mpps (the peak packet rate on 10 Gbit/s
links). This is more than 20 times faster than conven-
tional APIs. Large speedups (5x and more) are also
achieved on user-space Click and other packet forward-
ing applications using a libpcap emulation library run-
ning on top of nermap.

“This work was funded by the EU FP7 project CHANGE (257422).

fUSENIX plans to publish this paper on the Proceedings
of the 2012 USENIX Annual Technical Conference, which will
be available at this URL after June 13, 2012. You may
also find this paper, with related material, on the author’s site,
http://info.iet.unipi.it/ luigi/netmap/

1 Introduction

General purpose OSes provide a rich and flexible envi-
ronment for running, among others, many packet pro-
cessing and network monitoring and testing tasks. The
high rate raw packet I/O required by these applica-
tions is not the intended target of general purpose OSes.
Raw sockets, the Berkeley Packet Filter [14] (BPF), the
AF_SOCKET family, and equivalent APIs have been
used to build all sorts of network monitors, traffic gen-
erators, and generic routing systems. Performance, how-
ever, is inadequate for the millions of packets per sec-
ond (pps) that can be present on 1..10 Gbit/s links. In
search of better performance, some systems (see Sec-
tion 3) either run completely in the kernel, or bypass the
device driver and the entire network stack by exposing
the NIC’s data structures to user space applications. Ef-
ficient as they may be, many of these approaches depend
on specific hardware features, give unprotected access to
hardware, or are poorly integrated with the existing OS
primitives.

The netmap framework presented in this paper com-
bines and extends some of the ideas presented in the
past trying to address their shortcomings. Besides giving
huge speed improvements, netmap does not depend on
specific hardware!, has been fully integrated in FreeBSD
and Linux with minimal modifications, and supports un-
modified libpcap clients through a compatibility library.

One metric to evaluate our framework is performance:
in our implementation, moving one packet between the
wire and the userspace application has an amortized cost
of less than 70 CPU clock cycles, which is at least one
order of magnitude faster than standard APIs. In other
words, a single core running at 900 MHz can source or
sink the 14.88 Mpps achievable on a 10 Gbit/s link. The
same core running at 150 MHz is well above the capacity

Unetmap can give isolation even without hardware mechanisms such

as IOMMU or VMDq, and is orthogonal to hardware offloading and
virtualization mechanisms (checksum, TSO, LRO, VMD, etc.)

StackMap: Low-Latency Networking with the OS Stack and Dedicated NICs

Kenichi Yasukata®!, Michio Honda?, Douglas Santry?, and Lars Eggert>
Keio University
2NetApp

Abstract

StackMap leverages the best aspects of kernel-bypass
networking into a new low-latency Linux network service
based on the full-featured TCP kernel implementation, by
dedicating network interfaces to applications and offering
an extended version of the netmap API as a zero-copy, low-
overhead data path while retaining the socket API for the
control path. For small-message, transactional workloads,
StackMap outperforms baseline Linux by 4 to 80 % in
latency and 4 to 391 % in throughput. It also achieves
comparable performance with Seastar, a highly-optimized
user-level TCP/IP stack for DPDK.

1 Introduction

The TCP/IP protocols are typically implemented as part of
an operating system (OS) kernel and exposed to applica-
tions through an application programming interface (API)
such as the socket API [61] standard. This protects and
isolates applications from one another and allows the OS
to arbitrate access to network resources. Applications can
focus on implementing their specific higher-level func-
tionality and need not deal with the details of network
communication.

A shared kernel implementation of TCP/IP has other
advantages. The commercialization of the Internet has
required continuous improvements to end-to-end data
transfers. A collaboration between commercial and open
source developers, researchers and IETF participants over
at least the last 25 years has been improving TCP/IP to
scale to increasingly diverse network characteristics [11,
39, 58], growing traffic volumes [13, 32], and improved
tolerance to throughput fluctuations and reduced transmis-
sion latencies [1, 10, 49].

A modern TCP/IP stack is consequently a complex,
highly optimized and analyzed piece of software. Due to
these complexities, only a small number of stacks (e.g.,

“Most of the research was done during an internship at NetApp.

Linux, Windows, Apple, BSD) have a competitive feature
set and performance, and therefore push the vast majority
of traffic. Because of this relatively small number of OS
stacks (compared to the number of applications), TCP/IP
improvements have a well-understood and relatively easy
deployment path via kernel updates, without the need to
change applications.

However, implementing TCP/IP in the kernel also has
downsides, which are becoming more pronounced with
larger network capacities and applications that are more
sensitive to latency and jitter. Kernel data processing
and queueing delays now dominate end-to-end latencies,
particularly over uncongested network paths. For example,
the fabric latency across a datacenter network is typically
only a few ps. But a minimal HTTP transaction over the
same fabric, consisting of a short “GET” request and an
“OK” reply, takes tens to hundreds of us (see Section 3).

Several recent proposals attempt to avoid these over-
heads in a radical fashion: they bypass the kernel stack and
instead implement all TCP/IP processing inside the appli-
cation in user space [24, 29, 37] or in a virtual machine
context [4]. Although successful in avoiding overheads,
these kernel-bypass proposals also do away with many
of the benefits of a shared TCP/IP implementation: They
usually implement a simplistic flavor of TCP/IP that does
not include many of the performance optimizations of the
OS stacks, it is unclear if and by whom future protocol im-
provements would be implemented and deployed, and the
different TCP/IP versions used by different applications
may negatively impact one another in the network.

It is questionable whether kernel-bypass approaches
are suitable even for highly specialized network environ-
ments such as datacenters. Due to economic reasons [17],
they are assembled from commodity switches and do not
feature a centralized flow scheduler [2, 45]. Therefore,
path characteristics in such datacenters vary, and more
advanced TCP protocol features may be useful in order to
guarantee sub-millisecond flow completion times.
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