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Lecture Outline

• Actors, sockets, and network protocols  

• Asynchronous I/O frameworks 

• Higher level abstractions
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Message Passing and Network Protocols

• Recap:  
• Actor-based framework for message passing 

• Each actor has a receive loop  

• Calls to one function per state 

• Messages delivered by runtime system; 
processed sequentially 

• Actor can send messages in reply;  
return identity of next state 

• Can we write network code this way? 
• Send data by sending a message to an actor representing a socket 

• Receive messages representing data received on a socket
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Integrating Actors and Sockets

• Conceptually straightforward to integrate 
actors with network code  
• Runtime system maintains sending and receiving 

threads that manage the sockets 

• Receiving thread reads network protocol data from 
sockets, parses into messages, dispatches into the 
actor runtime 

• Sending thread receives messages from the actor 
runtime, encodes them as formatted packets of the 
network protocol, and sends via appropriate socket
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Parsing and Serialisation

• Parsing and serialisation requires socket awareness of the protocol: 
• E.g., make Socket an abstract class with encode and parse methods that 

are implemented by concrete subclasses and understand particular protocol 

• The encode method takes an object representing a protocol message, and 
returns a byte array that can be sent via the socket 

• The parse method takes a byte array received from the socket, and returns 
an object representing the protocol message 

• Encapsulates parsing and serialisation – everything outside the 
socket uses strongly typed objects, not raw protocol data
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Actors for Network Programming

• Conceptually clean – the simple message passing model abstracts 
away details of network transport 
• Easy to program and debug 

• Encapsulates parsing and serialisation 

• Helps correctness – on-the-wire format hidden, applications operate on 
strongly typed objects:
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def receive = {
  case HttpRequest(GET, Uri.Path("/ping"), _, _, _) => {
    sender ! HttpResponse(entity = “PONG”)
  }
  case HttpRequest(PUT, …) => {
    …
  }
  case _: Tcp.ConnectionClosed => {
    …
  }
} (Fragment of Scala+Akka+Spray code)
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Actors for Network Programming 

• Performance reasonable, but likely not outstanding 

• Conceptually well suited to implementing protocols 
• Asynchronous reception matches network behaviour 

• Operates at high level of abstraction 

• Examples: EJabberD, WhatsApp → Erlang 

• Potentially ill-suited to applications that track details of network 
behaviour 
• The “send message and forget it” style isn’t well suited to monitoring the 

progress or timing of delivery (e.g., for an adaptive video conference app)
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Asynchronous I/O Frameworks

• Key insight from actor-based I/O: packet reception should be 
asynchronous to match the network 

• However… 
• Sending API should be synchronous 

• The back pressure of a blocking send is useful to avoid congestion/sending queue build-
up 

• Applications that query the state of a network interface need to know what is happening 
now, not what happened some time in the past, after a message exchange 

• Much simpler to implement in a synchronous manner 

• Actor-based implementations have relatively high overhead 

• Implement as a blocking event loop, with timeout – an 
asynchronous (i.e., event driven) I/O framework
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Event Loops

• Many implementations with similar 
functionality 
• select() and poll(): portable, but 

slow with large numbers of sockets 

• epool() (Linux), kqueue (FreeBSD/
macOS, iOS): efficient, less portable 

• libevent/libev/libuv wrap the 
above in a unified API (libuv currently 
seems most popular) 

• Basic operation: 
• Pass a set of sockets, file descriptors, 

etc., to the kernel 

• Poll those for events – will block until 
something happens or timeout occurs 

• Process events, send any responses, 
loop back for next event 

• Single threaded event loop 
• Long-running operations are passed to 

separate worker threads
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Example: libev
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Initialise

Loop, processing events

Callback to handle event and 
send response if needed

…

static void udp_cb(EV_P_ ev_io *w, int revents) {
  // Called with data is readable on the UDP socket
}

int main(void) {
    int port = DEFAULT_PORT;
    puts("udp_echo server started...");

    // Setup a udp listening socket.
    sd = socket(PF_INET, SOCK_DGRAM, 0);
    bzero(&addr, sizeof(addr));
    addr.sin_family = AF_INET;
    addr.sin_port = htons(port);
    addr.sin_addr.s_addr = INADDR_ANY;
    if (bind(sd, (struct sockaddr*) &addr, sizeof(addr)) != 0)
        perror("bind");

    // Do the libev stuff.
    struct ev_loop *loop = ev_default_loop(0);
    ev_io udp_watcher;
    ev_io_init(&udp_watcher, udp_cb, sd, EV_READ);
    ev_io_start(loop, &udp_watcher);
    ev_loop(loop, 0);

    close(sd);
    return EXIT_SUCCESS;
}
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Example: Rust MIO
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Initialise

Loop, processing events

fn main() {
    let ip       = IpAddr::V4(Ipv4Addr::new(0,0,0,0));
    let port     = 2223;
    let sockaddr = SocketAddr::new(ip, port);
    let socket   = UdpSocket::bind(&sockaddr).unwrap();

    let poll = Poll::new().unwrap();
    let mut events = Events::with_capacity(1024);

    poll.register(&socket, TOKEN, Ready::readable(), PollOpt::edge()).unwrap();

    loop {
        poll.poll(&mut events, None).unwrap();

        for event in &events {
            match event.token() {
                TOKEN => {
                    println!("got event");
                }
                _ => panic!("event with unexpected token")
            }
        }
    }
}

Handle events
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Event Loops

• Asynchronous I/O via event loops – efficient and highly scalable 
• Some implementations callback based (e.g., libuv), others expose the 

event set and allow applications to dispatch (e.g., Rust MIO) 
• I tend to prefer the latter, pattern matching. style – code is more obvious 

• Provided it does no long-running calculations, a single asynchronous I/O 
thread can usually saturate a single network interface 
• Use one thread per network interface 

• Use a thread pool to handle long-running calculations, passing requests to it for 
processing 

• Model is the same as actor-based systems: 
• Sequence of events (i.e., messages) delivered to application; process each 

in turn, sending replies as needed 

• However, have direct access to underlying socket for sending operations, 
monitoring performance
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Higher-level Abstractions

• Event-driven asynchronous I/O efficient and flexible → but can to 
obfuscated code 
• Implementation split across numerous callbacks; hard to follow the logic 

• Flexible, to implement complex protocols 

• Can we provide an abstraction to simplify common protocol styles? 
• e.g., a server that responds to a single request with a single response
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Your Server as a Function (1)

• Conceptually, a server represents a function: 

• Takes a request and returns a future – an eventual response or 
error: 

• Combine with parsing and encoding functions: 
 
 
Convert raw protocol data to strongly-typed objects
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fn service_request(&self, req : Request) -> Future<Response, Error>; 

enum Future<Response, Error> {
  InProgress,
  Success<Response>,
  Failed<Error>
}

fn parse(&self, data : &[u8]) -> Result<Request, Error>;
fn encode(&self, res : Response) -> [u8];
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Your Server as a Function (2)

• These three functions, plus definitions of 
Request, Response, and Error types can 
specify a server 

• Plug into a library handling asynchronous I/O 
operations/scheduling calls to the functions 

• Potentially allows writing services at a very 
high level of abstraction 

• Examples: 
• Twitter’s Finagle library in Scala 

• The Tokio framework for Rust 

• Further reading: 
•  M. Eriksen, “Your server as a function”, Proceedings 

of the Workshop on Programming Languages & 
Operating Systems, Farmington, PA, USA, November 
2013. ACM. DOI: 10.1145/2525528.2525538 

• Describes the Finagle library
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Abstract

Building server software in a large-scale setting, where systems ex-
hibit a high degree of concurrency and environmental variability, is
a challenging task to even the most experienced programmer. Ef-
ficiency, safety, and robustness are paramount—goals which have
traditionally conflicted with modularity, reusability, and flexibility.

We describe three abstractions which combine to present a pow-
erful programming model for building safe, modular, and efficient
server software: Composable futures are used to relate concurrent,
asynchronous actions; services and filters are specialized functions
used for the modular composition of our complex server software.

Finally, we discuss our experiences using these abstractions and
techniques throughout Twitter’s serving infrastructure.

Categories and Subject Descriptors D.1.1 [Programming tech-
niques]: Applicative (Functional) Programming; D.1.3 [Program-
ming techniques]: Concurrent Programming; D.1.3 [Program-
ming techniques]: Distributed Programming; C.2.4 [Distributed
Systems]: Client/server; C.2.4 [Distributed Systems]: Distributed
applications; D.3.3 [Programming languages]: Language Con-
structs and Features—Concurrent programming structures

1. Introduction

Servers in a large-scale setting are required to process tens of
thousands, if not hundreds of thousands of requests concurrently;
they need to handle partial failures, adapt to changes in network
conditions, and be tolerant of operator errors. As if that weren’t
enough, harnessing off-the-shelf software requires interfacing with
a heterogeneous set of components, each designed for a different
purpose. These goals are often at odds with creating modular and
reusable software [6].

We present three abstractions around which we structure our
server software at Twitter. They adhere to the style of func-
tional programming—emphasizing immutability, the composition
of first-class functions, and the isolation of side effects—and com-
bine to present a large gain in flexibility, simplicity, ease of reason-
ing, and robustness.

Futures The results of asynchronous operations are represented
by futures which compose to express dependencies between
operations.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PLOS ’13, PLOS’13, November 03-06 2013, Farmington, PA, USA.
Copyright c� 2013 ACM 978-1-4503-2460-1/13/11. . . $15.00.
http://dx.doi.org/10.1145/2525528.2525538

Services Systems boundaries are represented by asynchronous
functions called services. They provide a symmetric and uni-
form API: the same abstraction represents both clients and
servers.

Filters Application-agnostic concerns (e.g. timeouts, retries, au-
thentication) are encapsulated by filters which compose to build
services from multiple independent modules.

Server operations (e.g. acting on an incoming RPC or a time-
out) are defined in a declarative fashion, relating the results of the
(possibly many) subsequent sub-operations through the use of fu-
ture combinators. Operations are phrased as value transformations,
encouraging the use of immutable data structures and, we believe,
enhancing correctness through simplicity of reasoning.

Operations describe what is computed; execution is handled
separately. This frees the programmer from attending to the minu-
tiae of setting up threads, ensuring pools and queues are sized cor-
rectly, and making sure that resources are properly reclaimed—
these concerns are instead handled by our runtime library, Fina-
gle [10]. Relinquishing the programmer from these responsibilities,
the runtime is free to adapt to the situation at hand. This is used to
exploit thread locality, implement QoS, multiplex network I/O, and
to thread through tracing metadata (à la Google Dapper [20]).

We have deployed this in very large distributed systems with
great success. Indeed, Finagle and its accompanying structuring
idioms are used throughout the entire Twitter service stack—from
frontend web servers to backend data systems.

All of the code examples presented are written in the Scala [17]
programming language, though the abstractions work equally well,
if not as concisely, in our other principal systems language: Java.

2. Futures

A future is a container used to hold the result of an asynchronous
operation such as a network RPC, a timeout, or a disk I/O opera-
tion. A future is either empty—the result is not yet available; suc-
ceeded—the producer has completed and has populated the future
with the result of the operation; or failed—the producer failed, and
the future contains the resulting exception.

An immediately successful future is constructed with Future.
value; an immediately failed future with Future.exception. An
empty future is represented by a Promise, which is a writable
future allowing for at most one state transition, to either of the
nonempty states. Promises are similar to I-structures [4], except
that they embody failed as well as successful computations; they
are rarely used directly.

Futures compose in two ways. First, a future may be defined as
a function of other futures, giving rise to a dependency graph which
is evaluated in the manner of dataflow programming. Second, inde-
pendent futures are executed concurrently by default—execution is
sequenced only where a dependency exists.

Futures are first class values; they are wholly defined in the host
language.
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Summary

• Many types of network code are a good fit for actor frameworks 
• Protocol messages parsed/encoded to/from Actor messages 

• But – relatively high overheads; poorly suited to low-level applications 

• Event driven asynchronous I/O framework solve many of these 
issues – but can obfuscate code 
• Event driven approaches based on pattern matching lead to more obvious 

code than callback based systems 

• The server-as-a-function approach can abstract asynchronous I/O into 
simple, high-level, frameworks for some applications
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Further Reading

• M. Eriksen, “Your server as a function”, Proc. 
Workshop on Programming Languages and 
Operating Systems, Farmington, PA, USA, 
November 2013. ACM.  
DOI: 10.1145/2525528.2525538

17

Your Server as a Function

Marius Eriksen
Twitter Inc.

marius@twitter.com

Abstract

Building server software in a large-scale setting, where systems ex-
hibit a high degree of concurrency and environmental variability, is
a challenging task to even the most experienced programmer. Ef-
ficiency, safety, and robustness are paramount—goals which have
traditionally conflicted with modularity, reusability, and flexibility.

We describe three abstractions which combine to present a pow-
erful programming model for building safe, modular, and efficient
server software: Composable futures are used to relate concurrent,
asynchronous actions; services and filters are specialized functions
used for the modular composition of our complex server software.

Finally, we discuss our experiences using these abstractions and
techniques throughout Twitter’s serving infrastructure.
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1. Introduction

Servers in a large-scale setting are required to process tens of
thousands, if not hundreds of thousands of requests concurrently;
they need to handle partial failures, adapt to changes in network
conditions, and be tolerant of operator errors. As if that weren’t
enough, harnessing off-the-shelf software requires interfacing with
a heterogeneous set of components, each designed for a different
purpose. These goals are often at odds with creating modular and
reusable software [6].

We present three abstractions around which we structure our
server software at Twitter. They adhere to the style of func-
tional programming—emphasizing immutability, the composition
of first-class functions, and the isolation of side effects—and com-
bine to present a large gain in flexibility, simplicity, ease of reason-
ing, and robustness.

Futures The results of asynchronous operations are represented
by futures which compose to express dependencies between
operations.
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Services Systems boundaries are represented by asynchronous
functions called services. They provide a symmetric and uni-
form API: the same abstraction represents both clients and
servers.

Filters Application-agnostic concerns (e.g. timeouts, retries, au-
thentication) are encapsulated by filters which compose to build
services from multiple independent modules.

Server operations (e.g. acting on an incoming RPC or a time-
out) are defined in a declarative fashion, relating the results of the
(possibly many) subsequent sub-operations through the use of fu-
ture combinators. Operations are phrased as value transformations,
encouraging the use of immutable data structures and, we believe,
enhancing correctness through simplicity of reasoning.

Operations describe what is computed; execution is handled
separately. This frees the programmer from attending to the minu-
tiae of setting up threads, ensuring pools and queues are sized cor-
rectly, and making sure that resources are properly reclaimed—
these concerns are instead handled by our runtime library, Fina-
gle [10]. Relinquishing the programmer from these responsibilities,
the runtime is free to adapt to the situation at hand. This is used to
exploit thread locality, implement QoS, multiplex network I/O, and
to thread through tracing metadata (à la Google Dapper [20]).

We have deployed this in very large distributed systems with
great success. Indeed, Finagle and its accompanying structuring
idioms are used throughout the entire Twitter service stack—from
frontend web servers to backend data systems.

All of the code examples presented are written in the Scala [17]
programming language, though the abstractions work equally well,
if not as concisely, in our other principal systems language: Java.

2. Futures

A future is a container used to hold the result of an asynchronous
operation such as a network RPC, a timeout, or a disk I/O opera-
tion. A future is either empty—the result is not yet available; suc-
ceeded—the producer has completed and has populated the future
with the result of the operation; or failed—the producer failed, and
the future contains the resulting exception.

An immediately successful future is constructed with Future.
value; an immediately failed future with Future.exception. An
empty future is represented by a Promise, which is a writable
future allowing for at most one state transition, to either of the
nonempty states. Promises are similar to I-structures [4], except
that they embody failed as well as successful computations; they
are rarely used directly.

Futures compose in two ways. First, a future may be defined as
a function of other futures, giving rise to a dependency graph which
is evaluated in the manner of dataflow programming. Second, inde-
pendent futures are executed concurrently by default—execution is
sequenced only where a dependency exists.

Futures are first class values; they are wholly defined in the host
language.
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