PL

University

e QfGlang 60 YEARS OF
COMPUTING
AT GLASGOW

School of
Computing Science

Message Passing (2)

Advanced Operating Systems
Lecture 12

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/

Lecture Outline

e Use of message passing
e Pattern matching and state machines

e Remote actors
e System upgrade and evolution

e Error handling in message passing systems

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Patterns and State Machines

o A set of states and transitions triggered by/causing events forms a
state machine

e An actor comprises a set of events — messages — and various states —
functions — that process events as they are received

e Pattern matching operation dictates response to different types of events in
each state

e Discussed the idea for device driver robustness — but natural for
message passing actors

e Message passing code naturally contains a formalised description of the
state machine

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Example: Singularity State Machines

e Singularity devices drivers are an example formal
state machine in a message passing system

START IDevicelnfo

?RegisterForEvents

|O_CONFIGURE_BEGIN

lInvalidParameters l?SetParameters

I0_CONFIGURE_ACK
2ConfigurelO l!SucceSS

|O_CONFIGURED

?StartIOl ?PacketForReceive

|O_RUNNING

?GetReceivedPacket

contract NicDevice {

out message DeviceInfo(...);

ig message RegisterForEvents(NicEvents.EXp:READY
Cc);

in message SetParameters(...);

out message InvalidParameters(...);

out message Success();

in message Startio();

in message ConfigureIlo();

in message PacketForReceive(byte[] in ExHeap p);
ogt message BadPacketSize(byte[] in ExHeap p, int
m);

in message GetReceivedPacket();

out message ReceivedPacket(Packet * in ExHeap p);
out message NoPacket();

state START: one {
DeviceInfo! - IO_CONFIGURE_BEGIN;

State_IO_CONFIGURE_BEGIN: one {
RegisterForeEvents? -
SetParameters? - IO_CONFIGURE_ACK;

}

state IO_CONFIGURE_ACK: one {
InvalidParameters! - IO_CONFIGURE_BEGIN;
Success! - IO_CONFIGURED;

}

state IO_CONFIGURED: one {
StartIo? - IO_RUNNING;
ConfigureIO? - IO_CONFIGURE_BEGIN;

state IO_RUNNING: one {
PacketForrReceive? - (Success! or BadPacketSize!)
- TIO_RUNNING;
GetReceivedPacket? - (ReceivedPacket! or
NoPacket!)
- TIO_RUNNING;

}

Listing 1. Contract to access a network device driver.

[G. Hunt and J. Larus. Singularity: Rethinking the software stack. ACM
SIGOPS OS Review, 41(2), Apr. 2007. DOI 10.1145/1243418.1243424]

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Example: Singularity State Machines

e Contract defines the state machine — essentially an abstract type

* Implementation uses pattern matching
againSt received messages NicDevice.Exp:IO_RUNNING nicClient ...

: switch receive { \ the state
° A funCtlon for eaCh State Wc!ase |;1icCII‘iIent .PacketForReceive(buf):
// add buf to the available \buffers , reply

e Each function switches based on type

Of the message ObJeCt rece|ved case nicClient . GetReceivedPacket():

// send back a buffer with ket da¥a if available

case nicClient . ChannelClosed (): mes_sageg that can be
// client closed channel received in that state

}

[M. Fahndrich et al. Language support for fast and reliable

» Compiler checks switch receive i i T
statements handle all messages defined
by the contract

* Blocks in the switch receive statement must end with
a transfer of control, to a function representing a new
state or to itself, allowing compiler to check transitions

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Modelling State Machine Correctness

 |f state machine is formally defined in code, can begin to verify it

e Check that the code implements the defined state machine

e Check the state machine itself

o Validate that the driver cannot deadlock
e Validate that certain states can be reached

o [discussed further in the MRS4 course]

e Code can readily be translated into (fragments of) a Promela model, for
example, suitable for verification with a model checker such as SPIN

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Remote Actors

e Two approaches to identifying message receiver:

 Receiver is anonymous, but bound to named channel

 Receiver is explicitly named as message destination
* Both required a named destination for messages

e Trivial to make this an opaque URL for the application, but meaningful to the
runtime — can identify remote actors

e Since messages either immutable or linearly typed, data can be safely
copied across the network

 Most message passing systems allow transparent use of remote
actors

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

System Upgrade and Evolution

e Message passing allows for easy system upgrade

Rather than passing messages directly to server, pass via
proxy

Proxy can load a new version of the server and redirect
messages, without disrupting existing clients

Eventually, all clients are talking to the new server; old server
Is garbage collected

e Allows for gradual transparent system upgrade

A running system can be upgraded without disrupting service

e Use of dynamic typing can make the upgrade easier

New components of the system can generate additional
messages, which are ignored by old components

Supervisor hierarchy allows system to notice if components
fail, and fallback to known good version

Backwards compatible extensions are simple to add in this
manner

Old
Server

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Error Handling

* The system is massively concurrent — errors in one part can be
handled elsewhere

e Error handling philosophy in Erlang:

e Let some other process do the error recovery

e |f you can’t do what you want to do, die

e |Letit crash

J. Armstrong, “Making reliable distributed systems in the presence
. of software errors”, PhD thesis, KTH, Stockholm, December 2003,
e Do not program defenSIve|y http://www.sics.se/~joe/thesis/armstrong_thesis_2003.pdf

 Be concerned with the overall system reliability, not the reliability of
any one component

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://www.sics.se/~joe/thesis/armstrong_thesis_2003.pdf

Let It Crash

e |In a single-process system, that process must be responsible for
handling errors

e If the single process fails, then the entire application has failed

* |n a multi-process system, each individual process is less precious
— it's just one of many

e Changes the philosophy of error handling

e A process which encounters a problem should not try to handle that problem
— instead, fail loudly, cleanly, and quickly “let it crash”

e Let another process cleanup and deal with the problem

* Processes become much simpler, since they're not cluttered with error
handling code

10

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Remote Error Handling

 How to handle errors in a concurrent distributed system?

* |solate the problem, let an unaffected process be responsible for
recovery

e Don't trust the faulty component
e Analogy to hardware fault tolerance

e Processes are linked, and the runtime is set to trap

errors and send a message to the linked process on @ {EXIT', PID, Reason}
failure

e e.g., process PID2 has requested notification of failure of PID1;
runtime sends an “EXIT” message on failure, to tell PID2 that
PID1 failed, and why

e Process PID2 then restarts PID1, and any other dependent
processes

11

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Supervision Hierarchies

e QOrganise problems into tree-structured groups of
processes, letting the higher nodes in the tree

monitor and correct errors in the lower nodes o

e Supervision trees are trees of supervisors — processes -~ "~.Supervisor tree
that monitor other processes in the system ’ y

e Supervisors monitor workers — which perform tasks — or
other supervisors

 Workers are instances of behaviours — processes
whose operation is characterised by callback functions
(i.e., the Erlang equivalent of objects)

 E.g,, server, event handler, finite state machine, supervisor,
application

e Abstract common behaviours into objects

e \Workers managed by supervisor processes that
restart them in the case of failure, or otherwise
handle errors

12

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Robustness of Erlang Systems

 Example: Ericsson AXD301 ATM switch

e Dimensioned to handle ~50,000 simultaneous flows
with ~120 in setup or teardown phase at any one time

 Processes ATM traffic at 160 gigabits per second
(16 x 10Gbps links)

e ~1.1 million lines of Erlang
iIn 2248 Erlang modules

e ~40 programmers

13

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Robustness of Erlang Systems

 Example: Ericsson AXD301 ATM switch

99.9999999% reliable in real-world deployment on 11 routers at a major
Ericsson customer (~0.5 seconds downtime per year)

Yet, failures do occur, and are handled by the supervision hierarchy and
distributed error recovery

Employs restart-and-recover semantics per-connection

Failures may disrupts one connection out of tens-of-thousands — assumes
failures are transient; system doesn’t employ multi-version programming

14

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Discussion

* The let-it-crash philosophy changes error handling, moving it out-of-
process

 There are a few compelling case studies to show it can work well in
some domains

* |s this a generally appropriate error-handling tool?

15

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Further Reading

e J. Armstrong, “Erlang”, Communications of the ACM,
53(9), September 2010, DOI:10.1145/1810891.1810910

e Does the programming model make sense?

e Does the reliability model (“let it crash™) make sense?

contributed articles

D01:10.1145/1810891.1810910

overhead; can create

The same component isolation that made
it effective for large distributed telecom
systems makes it effective for multicore
CPUs and networked applications.

[BY JoE ARMSTRONG

Erlang

ERLANG IS A cOncurrent programmir

g language
designed for programming fault-tolerant distributed
systems at Ericsson and has been (since 2000) freely
available subject to an open-source license. More
recently, we’ve seen renewed interest in Erlang, as
the Erlang way of programming maps naturally to
multicore computers. In it the notion of a process is
fundamental, with processes created and managed
by the Erlang runtime system, not by the underlying
operating system. The individual processes, which are
programmed in a simple dynamically typed functional
programming language, do not share memory and
exchange data through message passing, simplifying
the programming of multicore computers.
Erlang?is used for programming fault-tolerant,
distributed, real-time applications. What differentic
it from most other languages is that it’s a concurrent
programming language; concurrency belongs to
the language, not to the operating system. Its
programs are collections of parallel processes
cooperating to solve a particular problem that can
be created quickly and have only limited memory

es

large numbers of Erlang processes yet
ignore any preconceived ideas they
might have about limiting the number
of processes in their solutions.

All Erlang processes are isolated
from one another and in principle
are “thread safe.” When Erlang ap-
plications are deployed on multicore
computers, the individual Erlang pro-
cesses are spread over the cores, and
programmers do not have to worry
about the details. The isolated pro-
cesses share no data, and polymor-
phic messages can be sent between
processes. In supporting strong iso-
lation between processes and poly-
morphism, Erlang could be viewed
as extremely object-oriented though
without the usual mechanisms associ-
ated with traditional 00 languages

Erlang has no mutexes, and pro-
cesses cannot share memory.’ Even
within a process, data is immutable.
The sequential Erlang subset that ex-
ecutes within an individual process is a
dynamically typed functional program-
ming language with immutable state.”
Moreover, instead of classes, methods,
and inheritance, Erlang has modules
that contain functions, as well as high-
er-order functions. It also includes pro-
cesses, sophisticated error handling,
code-replacement mechanisms, and a
large set of libraries.

Here, 1 outline the key design crite-
ria behind the language, showing how
they are reflected in the language itself,
as well as in programming language
technology used since 1985.

Shared Nothing

The Erlang story began in mid-1985
when Iwas a new employee at the Er-
icsson Computer Science Lab in Stock-

a “The shared memory is hidden from the pro-

b This s not srictly true; processes can mutate
Tocal data, though such mutation is discour

aged and rarely necessary

— .

—

16

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://dx.doi.org/10.1145/1810891.1810910

