PL

University

e QfGlang 60 YEARS OF
COMPUTING
AT GLASGOW

School of
Computing Science

Message Passing (1)

Advanced Operating Systems
Lecture 11

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/

Lecture Outline

 Message passing systems
e Approaches and principles
e Design choices
« Examples
e Erlang, Scala+Akka
e Rust
* Avoiding race conditions

e |mmutable data

e Ownership tracking

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Message Passing Systems

e System is structured as a set of communicating
processes, with no shared mutable state

e All communication via exchange of messages

e Messages are generally required to be immutable — data
conceptually copied between processes

e Some systems use linear types to ensure messages are
not referenced after they are sent, allowing mutable data
to be safely transferred

e Implementation

e Implementation within a single system usually built with
shared memory and locks, passing a reference to the
message — rely on correct locking of message passing
implementation

e Trivial to distribute, by sending the message down a
network channel — the runtime needs to know about the
network, but the application can be unaware that the
system is distributed

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Message Handling

e Receivers pattern match against messages

e Match against message types, not just values

 Type system can ensure an exhaustive match

A

Send to
other actors

..

: Mailbox
Sender | Receive Queue
5). Message

e Messages queued for processing

o Dispatcher manages a thread pool servicing
receiver components of the actors

o Receivers operate in message processing loop —
single-threaded, with no concern for concurrency

e Sent messages enqueued for processing by other
actors

Message

Message

¥ | Message

—

h..
-y P

Dequeue

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Types of Message Passing

e Several different message passing system designs:

e Synchronous vs asynchronous
o Statically or dynamically typed

e Direct or indirect message delivery

 Each has advantages and disadvantages

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Interaction Models

 Message passing can involve rendezvous between sender and
receiver

e A synchronous message passing model — sender waits for receiver
o Alternatively, communication may be asynchronous

 The sender continues immediately after sending a message
 Message is buffered, for later delivery to the receiver

e Synchronous rendezvous can be simulated by waiting for a reply

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Communication and the Type System

o Statically-typed communication

o Explicitly define the types of message that can be transferred

o Compiler checks that receiver can handle all messages it can receive —
robustness, since a receiver is guaranteed to understand all messages

e Dynamically-typed communication

« Communication medium conveys any time of message; receiver uses

pattern matching on the received message types to determine if it can
respond to the messages

e Potentially leads to run-time errors if a receiver gets a message that it
doesn’t understand

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Naming of Communications

 Are messages sent between named processes or indirectly via
channels?

Some systems directly send messages to actors (processes), each of which
has its own mailbox

Others use explicit channels, with messages being sent indirectly to a
mailbox via a channel

Explicit channels require more plumbing, but the extra level of indirection
between sender and receiver may be useful for evolving systems

Explicit channels are a natural place to define a communications protocol for
statically typed messages

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Implementations

 Message passing starting to see wide deployment, with two widely
used architectures:

 Dynamically typed with direct delivery

e The Erlang programming language (https://www.erlang.org/)

e The Scala programming language (http://www.scala-lang.org) and Akka library (http://
akka.io)

 Dynamically typed — any type of message may be sent to any receiver
 Messages sent directly to named actors, not via channels

e Both provide transparent distribution of processes in a networked system
o Statically typed, with explicit channels

e The Singularity operating system

e The Rust programming language (https://www.rust-lang.org/)

e Use asynchronous statically typed messages passed via explicit channels

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://www.erlang.org/
http://www.scala-lang.org
http://akka.io
http://akka.io
https://www.rust-lang.org/

Example: Scala+Akka

import akka.actor.Actor
import akka.actor.ActorSystem
import akka.actor.Props

class HelloActor extends Actor { The actor comprises a receive loop that reacts
def receive = { to messages as they're received
case "hello" => println("hello back at you")
case _ => println("huh?") Complete program is a collection of actors that
} exchange messages
}

object Main extends App {
// Initialise actor runtime
val runtime = ActorSystem("HelloSystem")

// Create an actor, running concurrently
val helloActor = runtime.actorOf (Props[HelloActor], name = "helloactor")

// Send it some messages

helloActor ! "hello"
helloActor ! "buenos dias"

10

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Example: Rust

use std::sync: :mpsc::channel;
use std::thread;

A unidirectional channel, with transmit and receive sides
fn main() {

let (tx, rx) = channel(); Spawn a thread, that sends the number “42” down the channel
thread: : spawn (move| | {
})J:et _ = tx.send(42); Wait to receive data from the channel, process the data or

handle the error (e.g., if the channel closed unexpectedly)

match rx.recv () {
Ok (value) => {
println! (“Got {}”, wvalue);
}
Err (error) => {
// An error occurred..
}
}
}

11

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Trade-offs

 The two approaches behave quite differently:

e The Scala+Akka model allows weakly coupled processes to communicate
via asynchronous and dynamically typed messages:

Expressive, flexible, and extensible actor model
Robust framework for error handling via separate processes
Relative ease of upgrading running systems via dynamic actor insertion

Checking happens at run time, so guarantees of robustness are probabilistic

e Rust’s statically typed message passing provides compile-time checking that
a process can respond to messages

But, requires more plumbing to connect channels

Has more explicit error handling

e The usual static vs. dynamic typing debate

12

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Avoiding Race Conditions

 Runtime ensures a receiver processes messages sequentially, but
it is part of a concurrent system

e Sending and receiving actors may run concurrently

e Message data is shared between sender and receiver

* Important to ensure message data is immutable

e Erlang ensures this in the language — data is immutable

e Scala+Akka requires programmer discipline — potential race conditions if
message data modified after message sent

e Or, at least, never mutated once the message has been sent...

13

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Ownership Transfer

e Alternative to immutabillity: type system ensures
ownership of message data is transferred

 Avariable with linear type must be used only once; it o ;

EAvariant called affine types is used in

goes out Of Scope after use : Rust — data that can be used only once

e Potentially useful when sharing mutable data between
threads

. Implement sharing via a send function that takes a linear type
for the data to be shared

. Message data consumed by send function and receiver, so
can’t be used by the sender after message has been sent

o Data doesn’t need to be locked, since it can only be used by
one thread at once

e The compiler enforces that linear data is not shared
between threads

R. Ennals et al, Linear Types for Packet Processing, Proceedings of the European Symposium
: on Programming, Barcelona, March 2004. http://www.cl.cam.ac.uk/~am21/papers/esop04.pdf

Rust programming language: http://rust-lang.org/

14

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Ownership Transfer: Example

use std::sync: :mpsc::channel;
use std::thread;

struct State {
x : 132,
y : i32

}

fn main() {
let (tx, rx) = channel();

thread: : spawn (move| | ({
let mut message = Box::new(State {x : 4, y : 2});

let = tx.send (message) ;

message.x = 6; Race condition avoided — can’t use data after send ()

})

let result = rx.recv() .unwrap()

}

% rustc test.rs
test.rs:15:5: 15:18 error: use of moved value: message [E0382]

test.rs:15 message.x = 6;

A~~~~~~~~~~~~

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Efficiency of Message Passing

e Assuming immutable message or linear types,
message passing has an efficient
Implementation

 Copy message data in distributed systems
e Pass pointer to data in shared memory systems

e Neither case needs to consider shared access to
message data

e Garbage collected systems often allocate
messages from a shared exchange heap

e Collected separately from per-process heaps

e EXpensive to collect, since data in exchange heap
owned by multiple threads — need synchronisation

e Per-process heaps can be collected independently
and concurrently — ensures good performance

Process 1 Process 2

/

Process 3

~

|

I
1
1

[TUAA

[g
”’

—y

\

2 Exch ange Heap

\
\‘ \».

I
/

‘l/

[G. Hunt et al., Sealing OS processes to improve dependability and safety.
In Proc. EuroSys 2007, Lisbon, Portugal. DOI 10.1145/1272996.1273032]

16

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Summary

 Message passing as an alternative concurrency mechanism

e |ncreasingly popular

e Erlang, Scala+Akka (or Java+Akka...)
e Rust
e Library-based approaches: ZeroMQ, etc.

e Easy to reason about, simple programming model

 Provided data is immutable, or ownership is tracked

17

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

