
Colin Perkins | https://csperkins.org/ | Copyright © 2017 | This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License. To 
view a copy of this license, visit http://creativecommons.org/licenses/by-nd/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Message Passing (1)

Advanced Operating Systems 
Lecture 11

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/


Colin Perkins | https://csperkins.org/ | Copyright © 2017

Lecture Outline

• Message passing systems 
• Approaches and principles 

• Design choices 

• Examples 
• Erlang, Scala+Akka 

• Rust 

• Avoiding race conditions 
• Immutable data 

• Ownership tracking
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Message Passing Systems

• System is structured as a set of communicating 
processes, with no shared mutable state 

• All communication via exchange of messages 
• Messages are generally required to be immutable – data 

conceptually copied between processes 

• Some systems use linear types to ensure messages are 
not referenced after they are sent, allowing mutable data 
to be safely transferred  

• Implementation 
• Implementation within a single system usually built with 

shared memory and locks, passing a reference to the 
message – rely on correct locking of message passing 
implementation 

• Trivial to distribute, by sending the message down a 
network channel – the runtime needs to know about the 
network, but the application can be unaware that the 
system is distributed
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Message Handling

• Receivers pattern match against messages 
• Match against message types, not just values 

• Type system can ensure an exhaustive match 

• Messages queued for processing 
• Dispatcher manages a thread pool servicing  

receiver components of the actors 

• Receivers operate in message processing loop – 
single-threaded, with no concern for concurrency  

• Sent messages enqueued for processing by other 
actors
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Types of Message Passing

• Several different message passing system designs: 
• Synchronous vs asynchronous 

• Statically or dynamically typed 

• Direct or indirect message delivery 

• Each has advantages and disadvantages
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Interaction Models

• Message passing can involve rendezvous between sender and 
receiver 
• A synchronous message passing model – sender waits for receiver 

• Alternatively, communication may be asynchronous 
• The sender continues immediately after sending a message 

• Message is buffered, for later delivery to the receiver 

• Synchronous rendezvous can be simulated by waiting for a reply
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Communication and the Type System

• Statically-typed communication 
• Explicitly define the types of message that can be transferred 

• Compiler checks that receiver can handle all messages it can receive –
 robustness, since a receiver is guaranteed to understand all messages 

• Dynamically-typed communication 
• Communication medium conveys any time of message; receiver uses 

pattern matching on the received message types to determine if it can 
respond to the messages 

• Potentially leads to run-time errors if a receiver gets a message that it 
doesn’t understand
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Naming of Communications

• Are messages sent between named processes or indirectly via 
channels? 
• Some systems directly send messages to actors (processes), each of which 

has its own mailbox 

• Others use explicit channels, with messages being sent indirectly to a 
mailbox via a channel 

• Explicit channels require more plumbing, but the extra level of indirection 
between sender and receiver may be useful for evolving systems 

• Explicit channels are a natural place to define a communications protocol for 
statically typed messages
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Implementations

• Message passing starting to see wide deployment, with two widely 
used architectures: 
• Dynamically typed with direct delivery 

• The Erlang programming language (https://www.erlang.org/) 

• The Scala programming language (http://www.scala-lang.org) and Akka library (http://
akka.io) 

• Dynamically typed – any type of message may be sent to any receiver 

• Messages sent directly to named actors, not via channels 

• Both provide transparent distribution of processes in a networked system 

• Statically typed, with explicit channels 
• The Singularity operating system 

• The Rust programming language (https://www.rust-lang.org/) 

• Use asynchronous statically typed messages passed via explicit channels
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Example: Scala+Akka
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import akka.actor.Actor
import akka.actor.ActorSystem
import akka.actor.Props

class HelloActor extends Actor {
  def receive = {
    case "hello" => println("hello back at you")
    case _       => println("huh?")
  }
}

object Main extends App {
  // Initialise actor runtime
  val runtime = ActorSystem("HelloSystem")

  // Create an actor, running concurrently
  val helloActor = runtime.actorOf(Props[HelloActor], name = "helloactor")

  // Send it some messages
  helloActor ! "hello"
  helloActor ! "buenos dias"
}

The actor comprises a receive loop that reacts 
to messages as they’re received 

Complete program is a collection of actors that 
exchange messages
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Example: Rust
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use std::sync::mpsc::channel; 
use std::thread; 

fn main() { 
  let (tx, rx) = channel(); 

  thread::spawn(move|| { 
    let _ = tx.send(42); 
  }); 

  match rx.recv() { 
    Ok(value)  => { 
      println!(“Got {}”, value); 
    } 
    Err(error) => { 
      // An error occurred… 
    } 
  } 
}

A unidirectional channel, with transmit and receive sides

Spawn a thread, that sends the number “42” down the channel

Wait to receive data from the channel, process the data or 
handle the error (e.g., if the channel closed unexpectedly)
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Trade-offs

• The two approaches behave quite differently: 
• The Scala+Akka model allows weakly coupled processes to communicate 

via asynchronous and dynamically typed messages: 
• Expressive, flexible, and extensible actor model 

• Robust framework for error handling via separate processes 

• Relative ease of upgrading running systems via dynamic actor insertion 

• Checking happens at run time, so guarantees of robustness are probabilistic 

• Rust’s statically typed message passing provides compile-time checking that 
a process can respond to messages 
• But, requires more plumbing to connect channels 

• Has more explicit error handling 

• The usual static vs. dynamic typing debate
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Avoiding Race Conditions

• Runtime ensures a receiver processes messages sequentially, but 
it is part of a concurrent system 
• Sending and receiving actors may run concurrently 

• Message data is shared between sender and receiver 

• Important to ensure message data is immutable 
• Erlang ensures this in the language → data is immutable 

• Scala+Akka requires programmer discipline → potential race conditions if 
message data modified after message sent 

• Or, at least, never mutated once the message has been sent…
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Ownership Transfer

• Alternative to immutability: type system ensures 
ownership of message data is transferred 

• A variable with linear type must be used only once; it 
goes out of scope after use 

• Potentially useful when sharing mutable data between 
threads 

• Implement sharing via a send function that takes a linear type 
for the data to be shared 

• Message data consumed by send function and receiver, so 
can’t be used by the sender after message has been sent 

• Data doesn’t need to be locked, since it can only be used by 
one thread at once 

• The compiler enforces that linear data is not shared 
between threads
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R. Ennals et al, Linear Types for Packet Processing, Proceedings of the European Symposium 
on Programming, Barcelona, March 2004. http://www.cl.cam.ac.uk/~am21/papers/esop04.pdf 

Rust programming language: http://rust-lang.org/

A variant called affine types is used in 
Rust – data that can be used only once
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Ownership Transfer: Example
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use std::sync::mpsc::channel; 
use std::thread; 

struct State { 
    x : i32, 
    y : i32 
} 

fn main() { 
  let (tx, rx) = channel(); 

  thread::spawn(move|| { 
    let mut message = Box::new(State {x : 4, y : 2}); 

    let _ = tx.send(message); 

    message.x = 6; 
  }); 

  let result = rx.recv().unwrap(); 
} 

% rustc test.rs 
test.rs:15:5: 15:18 error: use of moved value: `message` [E0382] 
test.rs:15     message.x = 6; 
              ^~~~~~~~~~~~~

Race condition avoided – can’t use data after send()
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Efficiency of Message Passing

• Assuming immutable message or linear types, 
message passing has an efficient 
implementation 
• Copy message data in distributed systems 

• Pass pointer to data in shared memory systems 

• Neither case needs to consider shared access to 
message data 

• Garbage collected systems often allocate 
messages from a shared exchange heap 
• Collected separately from per-process heaps 

• Expensive to collect, since data in exchange heap 
owned by multiple threads – need synchronisation 

• Per-process heaps can be collected independently 
and concurrently – ensures good performance
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Singularity communication mechanisms and kernel API do 
not allow pointers to be passed from one SIP to another. 
Taken together, these mechanisms ensure the sealed 
process invariants, even for SIPs executing in the same 
address space. 

A SIP starts with a single thread, enough memory to hold 
its code, an initial set of channel endpoints, and a small 
heap. It obtains additional memory by calling the kernel@s 
page manager, which returns new, unshared pages. These 
pages need not be adjacent to the SIP@s existing address 
space, since safe programming languages do not require 
contiguous address spaces.  

Because user code is verified safe, several SIPs can share 
the same address space. Moreover, SIPS can safely 
execute at the same privileged level as the kernel. 
Eliminating these hardware protection barriers reduces the 
cost to create and switch contexts between SIPs. 

Low cost, in turn, makes it practical to use SIPs as a fine-
grain isolation and extension mechanism. With software 
isolation, system calls and inter-process communication 
execute significantly faster (30L500%) and 
communication-intensive programs run up to 33% faster 
than on hardware-protected operating systems. Aiken et al. 
[2] present an extensive comparison of hardware and 
software isolation in Singularity.  

SIPs are created from a signed manifest [39]. The manifest 
describes the SIP@s code, resources, and dependencies on 
the kernel and on other SIPs. All code within a SIP must 
be listed in the manifest. Singularity SIP manifests are 
entirely declarative. They describe the desired state of the 
application configuration after an installation, not the 
algorithm for installing the application. This frees the OS 
to employ consistent algorithms to update system 
configuration and to verify that an update has the desired 
effect. 

Upon creation, SIPs receive an immutable security 
principal name based on their manifest. Because SIPs are 
sealed, security policies can place high confidence that a 
SIP will not be subverted by third party code. Wobber et 
al. [51] describe how the Singularity security architecture 
builds robust security policies on the foundation of sealed 
processes. 

3.3. Light-Weight Language Runtime 
Unlike previous systems that relied on language safety 
(e.g., Smalltalk, Cedar/Mesa, etc.), Singularity SIPs 
execute autonomously. Each SIP contains its own memory 
pages, language runtime, and garbage collector (GC). 
Moreover, even communicating SIPs need not share a 
common runtime or GC.  

Because of the state isolation invariant, the runtime and 
garbage collector can employ data layout and GC 
algorithms appropriate for code in a particular SIP. 
Experience and the large number of published garbage 
collection algorithms strongly suggest that no one garbage 
collector is appropriate for all applications [17]. 
Singularity@s sealed process architecture decouples the 
algorithm, data structures, and execution of each SIP@s 
garbage collector. Each SIP can select a GC to 
accommodate its objectives. Moreover, the GC in a SIP 
can run without coordinating with any other SIP.  

A light-weight, customizable runtime is an integral part of 
Singularity@s implementation of the closed process 
architecture because it allows developers to use SIPs 
liberally without incurring large memory overheads. 
Because programs are compiled to native code at install 
time, Singularity@s language runtime can be quite small. 
The language runtime includes a GC, exception handling 
mechanisms, and a limited amount of reflection to 
determine the type of objects at runtime. Above the 
language runtime sits the base class library. Because SIPs 
are sealed, Bartok can reduce the footprint of the runtime 
and base class library even further by removing unused 
code, a process called \tree shaking] [16]. 

3.4. Channels 
Singularity SIPs communicate exclusively by sending 
messages over channels [14]. Channels enforce stronger 
semantics than the low-level IPC mechanisms of other 
systems. Channel communication is governed by statically 
verified channel contracts, which describe messages, 
message field types, and valid message interaction 
sequences as finite state machines. 

Messages are tagged collections of values or message 
blocks in the Exchange Heap. Object references are 
excluded from messages by the type system. Messages are 
ownership is transferred from a sending SIP to a receiving 
SIP during communication. 

Endpoints and message data reside in a special set of pages 
known as the Exchange Heap. The Exchange Heap is not 
garbage collected, but instead uses reference counts to 

Exchange Heap

Process 1 Process 2 Process 3

 
Figure 2. The Exchange Heap. [G. Hunt et al., Sealing OS processes to improve dependability and safety. 

In Proc. EuroSys 2007, Lisbon, Portugal. DOI 10.1145/1272996.1273032]
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Summary

• Message passing as an alternative concurrency mechanism 

• Increasingly popular 
• Erlang, Scala+Akka (or Java+Akka…) 

• Rust 

• Library-based approaches: ZeroMQ, etc. 

• Easy to reason about, simple programming model 
• Provided data is immutable, or ownership is tracked
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