
Colin Perkins | https://csperkins.org/ | Copyright © 2017 | This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-nd/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Message Passing (1)

Advanced Operating Systems
Lecture 11

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Lecture Outline

• Message passing systems
• Approaches and principles

• Design choices

• Examples
• Erlang, Scala+Akka

• Rust

• Avoiding race conditions
• Immutable data

• Ownership tracking

2

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Message Passing Systems

• System is structured as a set of communicating
processes, with no shared mutable state

• All communication via exchange of messages
• Messages are generally required to be immutable – data

conceptually copied between processes

• Some systems use linear types to ensure messages are
not referenced after they are sent, allowing mutable data
to be safely transferred

• Implementation
• Implementation within a single system usually built with

shared memory and locks, passing a reference to the
message – rely on correct locking of message passing
implementation

• Trivial to distribute, by sending the message down a
network channel – the runtime needs to know about the
network, but the application can be unaware that the
system is distributed

3

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Message Handling

• Receivers pattern match against messages
• Match against message types, not just values

• Type system can ensure an exhaustive match

• Messages queued for processing
• Dispatcher manages a thread pool servicing  

receiver components of the actors

• Receivers operate in message processing loop – 
single-threaded, with no concern for concurrency

• Sent messages enqueued for processing by other
actors

4

Message

Message

Message

Message

SenderSenderSender Receive
Mailbox
Queue

Dispatcher

Receiver

Dequeue

Process
Done

Request next

Actor

Send to
other actors

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Types of Message Passing

• Several different message passing system designs:
• Synchronous vs asynchronous

• Statically or dynamically typed

• Direct or indirect message delivery

• Each has advantages and disadvantages

5

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Interaction Models

• Message passing can involve rendezvous between sender and
receiver
• A synchronous message passing model – sender waits for receiver

• Alternatively, communication may be asynchronous
• The sender continues immediately after sending a message

• Message is buffered, for later delivery to the receiver

• Synchronous rendezvous can be simulated by waiting for a reply

6

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Communication and the Type System

• Statically-typed communication
• Explicitly define the types of message that can be transferred

• Compiler checks that receiver can handle all messages it can receive –
 robustness, since a receiver is guaranteed to understand all messages

• Dynamically-typed communication
• Communication medium conveys any time of message; receiver uses

pattern matching on the received message types to determine if it can
respond to the messages

• Potentially leads to run-time errors if a receiver gets a message that it
doesn’t understand

7

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Naming of Communications

• Are messages sent between named processes or indirectly via
channels?
• Some systems directly send messages to actors (processes), each of which

has its own mailbox

• Others use explicit channels, with messages being sent indirectly to a
mailbox via a channel

• Explicit channels require more plumbing, but the extra level of indirection
between sender and receiver may be useful for evolving systems

• Explicit channels are a natural place to define a communications protocol for
statically typed messages

8

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Implementations

• Message passing starting to see wide deployment, with two widely
used architectures:
• Dynamically typed with direct delivery

• The Erlang programming language (https://www.erlang.org/)

• The Scala programming language (http://www.scala-lang.org) and Akka library (http://
akka.io)

• Dynamically typed – any type of message may be sent to any receiver

• Messages sent directly to named actors, not via channels

• Both provide transparent distribution of processes in a networked system

• Statically typed, with explicit channels
• The Singularity operating system

• The Rust programming language (https://www.rust-lang.org/)

• Use asynchronous statically typed messages passed via explicit channels

9

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://www.erlang.org/
http://www.scala-lang.org
http://akka.io
http://akka.io
https://www.rust-lang.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Example: Scala+Akka

10

import akka.actor.Actor
import akka.actor.ActorSystem
import akka.actor.Props

class HelloActor extends Actor {
 def receive = {
 case "hello" => println("hello back at you")
 case _ => println("huh?")
 }
}

object Main extends App {
 // Initialise actor runtime
 val runtime = ActorSystem("HelloSystem")

 // Create an actor, running concurrently
 val helloActor = runtime.actorOf(Props[HelloActor], name = "helloactor")

 // Send it some messages
 helloActor ! "hello"
 helloActor ! "buenos dias"
}

The actor comprises a receive loop that reacts
to messages as they’re received

Complete program is a collection of actors that
exchange messages

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Example: Rust

11

use std::sync::mpsc::channel;
use std::thread;

fn main() {
 let (tx, rx) = channel();

 thread::spawn(move|| {
 let _ = tx.send(42);
 });

 match rx.recv() {
 Ok(value) => {
 println!(“Got {}”, value);
 }
 Err(error) => {
 // An error occurred…
 }
 }
}

A unidirectional channel, with transmit and receive sides

Spawn a thread, that sends the number “42” down the channel

Wait to receive data from the channel, process the data or
handle the error (e.g., if the channel closed unexpectedly)

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Trade-offs

• The two approaches behave quite differently:
• The Scala+Akka model allows weakly coupled processes to communicate

via asynchronous and dynamically typed messages:
• Expressive, flexible, and extensible actor model

• Robust framework for error handling via separate processes

• Relative ease of upgrading running systems via dynamic actor insertion

• Checking happens at run time, so guarantees of robustness are probabilistic

• Rust’s statically typed message passing provides compile-time checking that
a process can respond to messages
• But, requires more plumbing to connect channels

• Has more explicit error handling

• The usual static vs. dynamic typing debate

12

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Avoiding Race Conditions

• Runtime ensures a receiver processes messages sequentially, but
it is part of a concurrent system
• Sending and receiving actors may run concurrently

• Message data is shared between sender and receiver

• Important to ensure message data is immutable
• Erlang ensures this in the language → data is immutable

• Scala+Akka requires programmer discipline → potential race conditions if
message data modified after message sent

• Or, at least, never mutated once the message has been sent…

13

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Ownership Transfer

• Alternative to immutability: type system ensures
ownership of message data is transferred

• A variable with linear type must be used only once; it
goes out of scope after use

• Potentially useful when sharing mutable data between
threads

• Implement sharing via a send function that takes a linear type
for the data to be shared

• Message data consumed by send function and receiver, so
can’t be used by the sender after message has been sent

• Data doesn’t need to be locked, since it can only be used by
one thread at once

• The compiler enforces that linear data is not shared
between threads

14

R. Ennals et al, Linear Types for Packet Processing, Proceedings of the European Symposium
on Programming, Barcelona, March 2004. http://www.cl.cam.ac.uk/~am21/papers/esop04.pdf

Rust programming language: http://rust-lang.org/

A variant called affine types is used in
Rust – data that can be used only once

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Ownership Transfer: Example

15

use std::sync::mpsc::channel;
use std::thread;

struct State {
 x : i32,
 y : i32
}

fn main() {
 let (tx, rx) = channel();

 thread::spawn(move|| {
 let mut message = Box::new(State {x : 4, y : 2});

 let _ = tx.send(message);

 message.x = 6;
 });

 let result = rx.recv().unwrap();
}

% rustc test.rs
test.rs:15:5: 15:18 error: use of moved value: `message` [E0382]
test.rs:15 message.x = 6;
 ^~~~~~~~~~~~~

Race condition avoided – can’t use data after send()

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Efficiency of Message Passing

• Assuming immutable message or linear types,
message passing has an efficient
implementation
• Copy message data in distributed systems

• Pass pointer to data in shared memory systems

• Neither case needs to consider shared access to
message data

• Garbage collected systems often allocate
messages from a shared exchange heap
• Collected separately from per-process heaps

• Expensive to collect, since data in exchange heap
owned by multiple threads – need synchronisation

• Per-process heaps can be collected independently
and concurrently – ensures good performance

16

Singularity communication mechanisms and kernel API do
not allow pointers to be passed from one SIP to another.
Taken together, these mechanisms ensure the sealed
process invariants, even for SIPs executing in the same
address space.

A SIP starts with a single thread, enough memory to hold
its code, an initial set of channel endpoints, and a small
heap. It obtains additional memory by calling the kernel@s
page manager, which returns new, unshared pages. These
pages need not be adjacent to the SIP@s existing address
space, since safe programming languages do not require
contiguous address spaces.

Because user code is verified safe, several SIPs can share
the same address space. Moreover, SIPS can safely
execute at the same privileged level as the kernel.
Eliminating these hardware protection barriers reduces the
cost to create and switch contexts between SIPs.

Low cost, in turn, makes it practical to use SIPs as a fine-
grain isolation and extension mechanism. With software
isolation, system calls and inter-process communication
execute significantly faster (30L500%) and
communication-intensive programs run up to 33% faster
than on hardware-protected operating systems. Aiken et al.
[2] present an extensive comparison of hardware and
software isolation in Singularity.

SIPs are created from a signed manifest [39]. The manifest
describes the SIP@s code, resources, and dependencies on
the kernel and on other SIPs. All code within a SIP must
be listed in the manifest. Singularity SIP manifests are
entirely declarative. They describe the desired state of the
application configuration after an installation, not the
algorithm for installing the application. This frees the OS
to employ consistent algorithms to update system
configuration and to verify that an update has the desired
effect.

Upon creation, SIPs receive an immutable security
principal name based on their manifest. Because SIPs are
sealed, security policies can place high confidence that a
SIP will not be subverted by third party code. Wobber et
al. [51] describe how the Singularity security architecture
builds robust security policies on the foundation of sealed
processes.

3.3. Light-Weight Language Runtime
Unlike previous systems that relied on language safety
(e.g., Smalltalk, Cedar/Mesa, etc.), Singularity SIPs
execute autonomously. Each SIP contains its own memory
pages, language runtime, and garbage collector (GC).
Moreover, even communicating SIPs need not share a
common runtime or GC.

Because of the state isolation invariant, the runtime and
garbage collector can employ data layout and GC
algorithms appropriate for code in a particular SIP.
Experience and the large number of published garbage
collection algorithms strongly suggest that no one garbage
collector is appropriate for all applications [17].
Singularity@s sealed process architecture decouples the
algorithm, data structures, and execution of each SIP@s
garbage collector. Each SIP can select a GC to
accommodate its objectives. Moreover, the GC in a SIP
can run without coordinating with any other SIP.

A light-weight, customizable runtime is an integral part of
Singularity@s implementation of the closed process
architecture because it allows developers to use SIPs
liberally without incurring large memory overheads.
Because programs are compiled to native code at install
time, Singularity@s language runtime can be quite small.
The language runtime includes a GC, exception handling
mechanisms, and a limited amount of reflection to
determine the type of objects at runtime. Above the
language runtime sits the base class library. Because SIPs
are sealed, Bartok can reduce the footprint of the runtime
and base class library even further by removing unused
code, a process called \tree shaking] [16].

3.4. Channels
Singularity SIPs communicate exclusively by sending
messages over channels [14]. Channels enforce stronger
semantics than the low-level IPC mechanisms of other
systems. Channel communication is governed by statically
verified channel contracts, which describe messages,
message field types, and valid message interaction
sequences as finite state machines.

Messages are tagged collections of values or message
blocks in the Exchange Heap. Object references are
excluded from messages by the type system. Messages are
ownership is transferred from a sending SIP to a receiving
SIP during communication.

Endpoints and message data reside in a special set of pages
known as the Exchange Heap. The Exchange Heap is not
garbage collected, but instead uses reference counts to

Exchange Heap

Process 1 Process 2 Process 3

Figure 2. The Exchange Heap. [G. Hunt et al., Sealing OS processes to improve dependability and safety.

In Proc. EuroSys 2007, Lisbon, Portugal. DOI 10.1145/1272996.1273032]

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Summary

• Message passing as an alternative concurrency mechanism

• Increasingly popular
• Erlang, Scala+Akka (or Java+Akka…)

• Rust

• Library-based approaches: ZeroMQ, etc.

• Easy to reason about, simple programming model
• Provided data is immutable, or ownership is tracked

17

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

