
Colin Perkins | https://csperkins.org/ | Copyright © 2017 | This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-nd/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Implications of Concurrency

Advanced Operating Systems
Lecture 9

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Memory and Multicore Systems

• Hardware trends: multicore with non-uniform
memory access

• Cache coherency is expensive, since the
cores communicate by message passing
and memory is remote

2

M
em

o
ry

M
em

o
ry

L
2

 C
ac

h
e

L
2

 C
ac

h
e

L
2

 C
ac

h
e

L
2

 C
ac

h
e

C
0

C
1

C
2

C
3

C
4

C
5

C
6

C
7

Controller
Memory

Hub

Hub

I/O

ControllerG
b

e PCIe

Die Die Die Die

CPU CPU

Figure 1. Structure of the Intel system

G
b

e

C
o

re
 3

C
o

re
 2

Die Die

CPU

C
o

re
 0

C
o

re
 1

Die Die

CPU

M
em

o
ry

M
em

o
ry

PCI/Host

Bridge

PCI/Host

Bridge

PCIe

Figure 2. Structure of the AMD system

To run our benchmarks, we booted the hardware using our bare
Barrelfish kernel. No interrupts, other than the interprocessor in-
terrupt when required, were enabled and no tasks other than the
benchmark were running. Every benchmark was repeated 1,000,000
times, the aggregate measured by the processor’s cycle counter, and
the average taken.

3.1 IPI latency
To learn more about the communication latencies within a modern
PC, we measured the interprocessor interrupt (IPI) latency between
cores in our test systems. IPI is one example of direct communi-
cation between cores, and can be important for OS messaging and
synchronisation operations.

IPI roundtrip latency was measured using IPI ping-pong. In-
cluded in the total number of ticks is the code overhead needed to
send the IPI and to acknowledge the last interrupt in the APIC. For
our measurements, this overhead is not relevant, because we are
interested in the differences rather than absolute latencies.

We measured the various IPI latencies on our two systems; the
results are shown in Tables 1 and 2. As expected, sending an IPI
between two cores on the same socket is faster than sending to a
different socket, and sending an IPI to a core on the same die (in
the Intel case) is the fastest operation. The differences are of the

Roundtrip Latency
Ticks µ sec

Same Die 1096 0.41
Same Socket 1160 0.43
Different Socket 1265 0.47

Table 1. IPI latencies on the Intel system

Roundtrip Latency
Ticks µ sec

Same Socket 794 0.28
Different Socket 879 0.31

Table 2. IPI latencies on the AMD system

order of 10–15%. These may be significant, but it seems plausible
that a simple OS abstraction on this hardware that treats all cores
the same will not suffer severe performance loss over one that is
aware of the interconnect topology.

3.2 Memory hierarchy
Modern multicore systems often have CPU-local memory, to re-
duce memory contention and shared bus load. In such NUMA sys-
tems, it is possible to access non-local memory, and these accesses
are cache-coherent, but they require significantly more time than
accesses to local memory.

We measured the differences in memory access time from the
four cores on our AMD-based system. Each socket in this system
is connected to two banks of local memory while the other two
banks are accessed over the HyperTransport bus between the two
sockets. Our system has 8 gigabytes of memory installed evenly
across the four available memory banks. The benchmark accesses
memory within two gigabyte regions to measure its the latency. The
memory regions were accessed through uncached mappings, and
were touched before starting to prime the TLB. This benchmark
was executed on all four cores.

Table 3 shows the results as average latencies per core and mem-
ory region. As can be seen, the differences are significant. We
also ran the same benchmark on the Intel-based SMP system. As
expected, the latencies were the same (299 cycles) for every core.

Memory access is one case where current hardware shows sub-
stantial diversity, and not surprisingly is therefore where most of
the current scalability work on commodity operating systems has
focused.

3.3 Device access
In systems (such as our AMD machine) with more of a network-
like interconnect, the time to access devices depending on core.
Modern systems, such as our AMD machine, have more than one
PCI root complex; cores near the root complex have faster access to

Memory region Core 0 Core 1 Core 2 Core 3
0–2GB 192 192 319 323
2–4GB 192 192 319 323
4–6GB 323 323 191 192
6–8GB 323 323 191 192

Table 3. Memory access latencies (in cycles) on the AMD system

A. Schüpbach, et al., Embracing diversity in the Barrelfish manycore operating system.
Proc. Workshop on Managed Many-Core Systems, Boston, MA, USA, June 2008. ACM.

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Multicore Memory Models

• When do writes made by one core become visible to other cores?
• Prohibitively expensive for all threads on all core to have the exact same

view of memory (“sequential consistency”)

• For performance, allow cores inconsistent views of memory, except at
synchronisation points; introduce synchronisation primitives with well-defined
semantics

• Varies between processor architectures – differences generally hidden by
language runtime, provided language has a clear memory model

3

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Multicore Memory Models

• Memory Model defines space in which language runtime and
processor architecture can innovate, without breaking programs
• Synchronisation between threads occurs only at well-defined instants;

memory may appear inconsistent between these times, if that helps the
processor and/or runtime system performance

• Without well-defined memory model, cannot reason about lock-based code

• Essential for portable code using locks and shared memory

4

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Example: Java Memory Model

• Java has a formally defined memory model

• Between threads:
• Changes to a field made by one thread are visible to other threads if:

• The writing thread has released a synchronisation lock, and that same lock has
subsequently been acquired by the reading thread (writes with lock held are atomic to
other locked code)

• If a thread writes to a field declared volatile, that write is done atomically, and
immediately becomes visible to other threads

• A newly created thread sees the state of the system as if it had just acquired a
synchronisation lock that had just been released by the creating thread

• When a thread terminates, its writes complete and become visible to other threads

• Access to fields is atomic
• i.e., you can never observe a half-way completed write, even if incorrectly synchronised

• Except for long and double fields, for which writes are only atomic if field is volatile,
or if a synchronisation lock is held

• Within a thread: actions are seen in program order

5

[Somewhat simplified: see Java Language Specification, Chapter 17,
for full details http://docs.oracle.com/javase/specs/jls/se7/jls7.pdf]

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://docs.oracle.com/javase/specs/jls/se7/jls7.pdf

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Multicore Memory Models

• Java is unusual in having such a clearly-specified memory model
• Other languages are less well specified, running the risk that new processor

designs can subtly break previously working programs

• C and C++ have historically had very poorly specified memory models –
latest versions of standards address this, but not widely used

6

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Concurrency, Threads, and Locks

• Operating systems expose concurrency via
processes and threads
• Processes are isolated with separate memory areas

• Threads share access to a common pool of memory

• The processor/language memory models specify
how concurrent access to shared memory works
• Generally enforce synchronisation via explicit locks

around critical sections (e.g., Java synchronized
methods and statements; pthread mutexes)

• Very limited guarantees about unlocked concurrent
access to shared memory

7

Ti
m

e

Thread A Thread B

Critical
Section Blocked

Critical

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Limitations of Lock-based Concurrency

• Major problems with lock-based concurrency:
• Difficult to define a memory model that enables good performance, while

allowing programmers to reason about the code

• Difficult to ensure correctness when composing code
• Difficult to enforce correct locking

• Difficult to guarantee freedom from deadlocks

• Failures are silent – errors tend to manifest only under heavy load

• Balancing performance and correctness difficult – easy to over- or under-
lock systems

8

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Composition of Lock-based Code

• Correctness of small-scale code using locks can be ensured by careful coding
(at least in theory)

• A more fundamental issue: lock-based code does not compose to larger scale
• Assume a correctly locked bank account class, with 

methods to credit and debit money from an account

• Want to take money from a1 and move it to a2,  
without exposing an intermediate state where  
the money is in neither account

• Can’t be done without locking all other access  
to a1 and a2 while the transfer is in progress

• The individual operations are correct, but the combined operation is not

• This is lack of abstraction a limitation of the lock-based concurrency model,
and cannot be fixed by careful coding

• Locking requirements form part of the API of an object

9

a1.debit(v)
a2.credit(v)

Preemption exposes
intermediate state

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Alternative Concurrency Models

• Concurrency increasingly important
• Multicore systems now ubiquitous

• Asynchronous interactions between software and hardware devices

• Threads and synchronisation primitives problematic

• Are there alternatives that avoid these issues?
• Message passing systems and actor-based languages

• Transactional memory coupled with functional languages (e.g., Haskell) for
automatic rollback and retry of transactions

10

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Implications for Operating System Design

• A single kernel instance may not be appropriate
• Memory isn’t shared – don’t pretend it is!

• There may be no single “central” processor to initialise the kernel

• How to coordinate the kernel between peer processors?

• Multicore processors are increasing distributed systems at heart –
can we embrace this?

11

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

The Multi-kernel Model

• Build a distributed system that can use shared memory where
possible as an optimisation, rather than a system that relies on
shared memory

• The model is no longer that of a single operating system; rather a
collection of cooperating kernels

12

• Three design principles for a multi-
kernel operating system

• Make all inter-core communication explicit

• Make OS structure hardware neutral

• View state as replicated instead of shared

The Multikernel: A new OS architecture for scalable multicore systems

Andrew Baumann�, Paul Barham†, Pierre-Evariste Dagand‡, Tim Harris†, Rebecca Isaacs†,
Simon Peter�, Timothy Roscoe�, Adrian Schüpbach�, and Akhilesh Singhania�

�Systems Group, ETH Zurich
†Microsoft Research, Cambridge ‡ENS Cachan Bretagne

Abstract
Commodity computer systems contain more and more
processor cores and exhibit increasingly diverse archi-
tectural tradeo�s, including memory hierarchies, inter-
connects, instruction sets and variants, and IO configu-
rations. Previous high-performance computing systems
have scaled in specific cases, but the dynamic nature of
modern client and server workloads, coupled with the
impossibility of statically optimizing an OS for all work-
loads and hardware variants pose serious challenges for
operating system structures.

We argue that the challenge of future multicore hard-
ware is best met by embracing the networked nature of
the machine, rethinking OS architecture using ideas from
distributed systems. We investigate a new OS structure,
the multikernel, that treats the machine as a network of
independent cores, assumes no inter-core sharing at the
lowest level, and moves traditional OS functionality to
a distributed system of processes that communicate via
message-passing.

We have implemented a multikernel OS to show that
the approach is promising, and we describe how tradi-
tional scalability problems for operating systems (such
as memory management) can be e�ectively recast using
messages and can exploit insights from distributed sys-
tems and networking. An evaluation of our prototype on
multicore systems shows that, even on present-day ma-
chines, the performance of a multikernel is comparable
with a conventional OS, and can scale better to support
future hardware.

1 Introduction

Computer hardware is changing and diversifying faster
than system software. A diverse mix of cores, caches, in-
terconnect links, IO devices and accelerators, combined
with increasing core counts, leads to substantial scalabil-
ity and correctness challenges for OS designers.

x86

Async messages

App

x64 ARM GPU

App App

OS node OS node OS node OS node

State
replica

State
replica

State
replica

State
replica

App

Agreement
algorithms

Interconnect

Heterogeneous
cores

Arch-specific
code

Figure 1: The multikernel model.

Such hardware, while in some regards similar to ear-
lier parallel systems, is new in the general-purpose com-
puting domain. We increasingly find multicore systems
in a variety of environments ranging from personal com-
puting platforms to data centers, with workloads that are
less predictable, and often more OS-intensive, than tradi-
tional high-performance computing applications. It is no
longer acceptable (or useful) to tune a general-purpose
OS design for a particular hardware model: the deployed
hardware varies wildly, and optimizations become obso-
lete after a few years when new hardware arrives.

Moreover, these optimizations involve tradeo�s spe-
cific to hardware parameters such as the cache hierarchy,
the memory consistency model, and relative costs of lo-
cal and remote cache access, and so are not portable be-
tween di�erent hardware types. Often, they are not even
applicable to future generations of the same architecture.
Typically, because of these di⇥culties, a scalability prob-
lem must a�ect a substantial group of users before it will
receive developer attention.

We attribute these engineering di⇥culties to the ba-
sic structure of a shared-memory kernel with data struc-
tures protected by locks, and in this paper we argue for
rethinking the structure of the OS as a distributed sys-
tem of functional units communicating via explicit mes-

1

Baumann et al, “The Multikernel: A new OS architecture for scalable multicore
systems”, Proc. ACM SOSP 2009. DOI 10.1145/1629575.1629579

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Principle 1: Explicit Communication

• Multi-kernel model relies on message passing
• The only shared memory used by the kernels is that used to implement

message passing (user-space programs can request shared memory in the
usual way, if desired)
• Strict isolation of kernel instances can be enforced by hardware

• Share immutable data – message passing, not shared state

• Latency of message passing is explicitly visible
• Leads to asynchronous designs, since it becomes obvious where the system will block

waiting for a synchronous reply

• Differs from conventional kernels which are primarily synchronous, since latencies are
invisible

• Kernels become simpler to verify – explicit communication can be validated
using formals methods developed for network protocols

13

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Principle 2: Hardware Neutral Kernels

• Write clean, portable, code wherever possible
• Low-level hardware access is necessarily processor/system specific

• Message passing is performance critical: should use of system-specific
optimisations where necessary

• Device drivers and much other kernel code can be generic and portable –
better suited for heterogeneity

• Highly-optimised code is difficult to port
• Optimisations tend to tie it to the details of a particular platform

• The more variety of hardware platforms a multi-kernel must operate on, the better it is to
have acceptable performance everywhere, than high-performance on one platform, poor
elsewhere

• Hardware is changing faster than system software

14

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Principle 3: Replicated State

• A multi-kernel does not share state between cores
• All data structures are local to each core

• Anything needing global coordination must be managed using a distributed
protocol

• This includes things like the scheduler run-queues, network sockets, etc.
• e.g., there is no way to list all running processes, without sending each core a message

asking for its list, then combining the results

• A distributed system of cooperating kernels, not a single multiprocessor
kernel

15

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Multi-kernel Example: Barrelfish

• Implementation of multi-kernel model for
x86 NUMA systems

• CPU drivers
• Enforces memory protection, authorisation,

and the security model

• Schedules user-space processes for its core

• Mediates access to the core and associated
hardware (MMU, APIC, etc.)

• Provides inter-process communication for
applications on the core

• Implementation is completely event-driven,
single-threaded, and non-preemptable

• ~7500 lines of code (C + assembler)

• Monitors
• Coordinate system-wide state across cores

• Applications written to a subset of the
POSIX APIs

16

Figure 5: Barrelfish structure

we have liberally borrowed ideas from many other oper-
ating systems.

4.1 Test platforms
Barrelfish currently runs on x86-64-based multiproces-
sors (an ARM port is in progress). In the rest of this pa-
per, reported performance figures refer to the following
systems:

The 2�4-core Intel system has an Intel s5000XVN
motherboard with 2 quad-core 2.66GHz Xeon X5355
processors and a single external memory controller. Each
processor package contains 2 dies, each with 2 cores and
a shared 4MB L2 cache. Both processors are connected
to the memory controller by a shared front-side bus, how-
ever the memory controller implements a snoop filter to
reduce coherence tra�c crossing the bus.

The 2�2-core AMD system has a Tyan Thunder
n6650W board with 2 dual-core 2.8GHz AMD Opteron
2220 processors, each with a local memory controller
and connected by 2 HyperTransport links. Each core has
its own 1MB L2 cache.

The 4�4-core AMD system has a Supermicro H8QM3-
2 board with 4 quad-core 2.5GHz AMD Opteron 8380
processors connected in a square topology by four Hy-
perTransport links. Each core has a private 512kB L2
cache, and each processor has a 6MB L3 cache shared
by all 4 cores.

The 8�4-core AMD system has a Tyan Thunder S4985
board with M4985 quad CPU daughtercard and 8 quad-
core 2GHz AMD Opteron 8350 processors with the in-
terconnect in Figure 2. Each core has a private 512kB L2
cache, and each processor has a 2MB L3 cache shared by
all 4 cores.

4.2 System structure
The multikernel model calls for multiple independent OS
instances communicating via explicit messages. In Bar-
relfish, we factor the OS instance on each core into a
privileged-mode CPU driver and a distinguished user-
mode monitor process, as in Figure 5 (we discuss this
design choice below). CPU drivers are purely local

to a core, and all inter-core coordination is performed
by monitors. The distributed system of monitors and
their associated CPU drivers encapsulate the functional-
ity found in a typical monolithic microkernel: schedul-
ing, communication, and low-level resource allocation.

The rest of Barrelfish consists of device drivers and
system services (such as network stacks, memory allo-
cators, etc.), which run in user-level processes as in a
microkernel. Device interrupts are routed in hardware to
the appropriate core, demultiplexed by that core’s CPU
driver, and delivered to the driver process as a message.

4.3 CPU drivers
The CPU driver enforces protection, performs authoriza-
tion, time-slices processes, and mediates access to the
core and its associated hardware (MMU, APIC, etc.).
Since it shares no state with other cores, the CPU driver
can be completely event-driven, single-threaded, and
nonpreemptable. It serially processes events in the form
of traps from user processes or interrupts from devices or
other cores. This means in turn that it is easier to write
and debug than a conventional kernel, and is small2 en-
abling its text and data to be located in core-local mem-
ory.

As with an exokernel [22], a CPU driver abstracts very
little but performs dispatch and fast local messaging be-
tween processes on the core. It also delivers hardware
interrupts to user-space drivers, and locally time-slices
user-space processes. The CPU driver is invoked via
standard system call instructions with a cost comparable
to Linux on the same hardware.

The current CPU driver in Barrelfish is heavily spe-
cialized for the x86-64 architecture. In the future, we
expect CPU drivers for other processors to be simi-
larly architecture-specific, including data structure lay-
out, whereas the monitor source code is almost entirely
processor-agnostic.

The CPU driver implements a lightweight, asyn-
chronous (split-phase) same-core interprocess commu-
nication facility, which delivers a fixed-size message to
a process and if necessary unblocks it. More complex
communication channels are built over this using shared
memory. As an optimization for latency-sensitive opera-
tions, we also provide an alternative, synchronous oper-
ation akin to LRPC [9] or to L4 IPC [44].

Table 1 shows the one-way (user program to user pro-
gram) performance of this primitive. On the 2�2-core
AMD system, L4 performs a raw IPC in about 420 cy-
cles. Since the Barrelfish figures also include a sched-

2The x86-64 CPU driver, including debugging support and libraries,
is 7135 lines of C and 337 lines of assembly (counted by David
A. Wheeler’s “SLOCCount”), 54kB of text and 370kB of static data
(mainly page tables).

8

• Microkernel: network stack, memory
allocation via capability system, etc.,
all run in user space

• Message passing tuned to details of
AMD HyperTransport links and x86
cache-coherency protocols – highly
system specific

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Further Reading and Discussion

• A. Baumann et al., “The Multikernel: A new OS
architecture for scalable multicore systems”, Proc.
ACM SOSP 2009. DOI:10.1145/1629575.1629579

• Barrelfish is clearly an extreme: a shared-nothing
system implemented on a hardware platform that
permits some efficient sharing
• Is it better to start with a shared-nothing model, and

implement sharing as an optimisation, or start with a
shared-state system, and introduce message passing?

• Where is the boundary for a Barrelfish-like system?
• Distinction between a distributed multi-kernel and a

distributed system of networked computers?

17

The Multikernel: A new OS architecture for scalable multicore systems

Andrew Baumann�, Paul Barham†, Pierre-Evariste Dagand‡, Tim Harris†, Rebecca Isaacs†,
Simon Peter�, Timothy Roscoe�, Adrian Schüpbach�, and Akhilesh Singhania�

�Systems Group, ETH Zurich
†Microsoft Research, Cambridge ‡ENS Cachan Bretagne

Abstract
Commodity computer systems contain more and more
processor cores and exhibit increasingly diverse archi-
tectural tradeo�s, including memory hierarchies, inter-
connects, instruction sets and variants, and IO configu-
rations. Previous high-performance computing systems
have scaled in specific cases, but the dynamic nature of
modern client and server workloads, coupled with the
impossibility of statically optimizing an OS for all work-
loads and hardware variants pose serious challenges for
operating system structures.

We argue that the challenge of future multicore hard-
ware is best met by embracing the networked nature of
the machine, rethinking OS architecture using ideas from
distributed systems. We investigate a new OS structure,
the multikernel, that treats the machine as a network of
independent cores, assumes no inter-core sharing at the
lowest level, and moves traditional OS functionality to
a distributed system of processes that communicate via
message-passing.

We have implemented a multikernel OS to show that
the approach is promising, and we describe how tradi-
tional scalability problems for operating systems (such
as memory management) can be e�ectively recast using
messages and can exploit insights from distributed sys-
tems and networking. An evaluation of our prototype on
multicore systems shows that, even on present-day ma-
chines, the performance of a multikernel is comparable
with a conventional OS, and can scale better to support
future hardware.

1 Introduction

Computer hardware is changing and diversifying faster
than system software. A diverse mix of cores, caches, in-
terconnect links, IO devices and accelerators, combined
with increasing core counts, leads to substantial scalabil-
ity and correctness challenges for OS designers.

x86

Async messages

App

x64 ARM GPU

App App

OS node OS node OS node OS node

State
replica

State
replica

State
replica

State
replica

App

Agreement
algorithms

Interconnect

Heterogeneous
cores

Arch-specific
code

Figure 1: The multikernel model.

Such hardware, while in some regards similar to ear-
lier parallel systems, is new in the general-purpose com-
puting domain. We increasingly find multicore systems
in a variety of environments ranging from personal com-
puting platforms to data centers, with workloads that are
less predictable, and often more OS-intensive, than tradi-
tional high-performance computing applications. It is no
longer acceptable (or useful) to tune a general-purpose
OS design for a particular hardware model: the deployed
hardware varies wildly, and optimizations become obso-
lete after a few years when new hardware arrives.

Moreover, these optimizations involve tradeo�s spe-
cific to hardware parameters such as the cache hierarchy,
the memory consistency model, and relative costs of lo-
cal and remote cache access, and so are not portable be-
tween di�erent hardware types. Often, they are not even
applicable to future generations of the same architecture.
Typically, because of these di⇥culties, a scalability prob-
lem must a�ect a substantial group of users before it will
receive developer attention.

We attribute these engineering di⇥culties to the ba-
sic structure of a shared-memory kernel with data struc-
tures protected by locks, and in this paper we argue for
rethinking the structure of the OS as a distributed sys-
tem of functional units communicating via explicit mes-

1

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://dx.doi.org/10.1145/1629575.1629579

