;E University

e QfGlang 60 YEARS OF
COMPUTING
AT GLASGOW

School of
Computing Science

Implications of Concurrency

Advanced Operating Systems
Lecture 9

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/

Memory and Multicore Systems

e Hardware trends: multicore with non-uniform
memory access

e Cache coherency is expensive, since the
cores communicate by message passing
and memory is remote

CPU CPU
—) on [0} [] O > o
Ol | D5 Sl | O)5
< < < <
O O o O
=IMBIE 38| | @)E
Die Die Die Die
2
Memory g
Controller 5y
Hub || =
5
g
Q
>
I/0
Q
@ Controller
Hub

Memory

Figure 1. Structure of the Intel system

.| Core 0
Core 2
Core 3

Memory

Gbe

PCI/Host PCI/Host
Bridge Bridge

Figure 2. Structure of the AMD system

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Multicore Memory Models

 When do writes made by one core become visible to other cores?

e Prohibitively expensive for all threads on all core to have the exact same
view of memory (“sequential consistency”)

e For performance, allow cores inconsistent views of memory, except at
synchronisation points; introduce synchronisation primitives with well-defined

semantics

e Varies between processor architectures — differences generally hidden by
language runtime, provided language has a clear memory model

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Multicore Memory Models

« Memory Model defines space in which language runtime and
processor architecture can innovate, without breaking programs

e Synchronisation between threads occurs only at well-defined instants;
memory may appear inconsistent between these times, if that helps the
processor and/or runtime system performance

e Without well-defined memory model, cannot reason about lock-based code

e Essential for portable code using locks and shared memory

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Example: Java Memory Model

2 S hat simplified: J L Specification, Chapter 17,
« Java has a formally defined memory model St o suecomsveseispecssiscrier pa

 Between threads:

e Changes to a field made by one thread are visible to other threads if:

e The writing thread has released a synchronisation lock, and that same lock has
subsequently been acquired by the reading thread (writes with lock held are atomic to
other locked code)

o |If a thread writes to a field declared volatile, that write is done atomically, and
immediately becomes visible to other threads

* A newly created thread sees the state of the system as if it had just acquired a
synchronisation lock that had just been released by the creating thread

* When a thread terminates, its writes complete and become visible to other threads

e Access to fields is atomic

* j.e., you can never observe a half-way completed write, even if incorrectly synchronised

 Except for long and double fields, for which writes are only atomic if field is volatile,
or if a synchronisation lock is held

« Within a thread: actions are seen in program order

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://docs.oracle.com/javase/specs/jls/se7/jls7.pdf

Multicore Memory Models

e Java is unusual in having such a clearly-specified memory model

e Other languages are less well specified, running the risk that new processor
designs can subtly break previously working programs

e C and C++ have historically had very poorly specified memory models —
latest versions of standards address this, but not widely used

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Concurrency, Threads, and Locks

e QOperating systems expose concurrency via
processes and threads

e Processes are isolated with separate memory areas

e Threads share access to a common pool of memory

e The processor/language memory models specify
how concurrent access to shared memory works

Time

Critical Blocked
Section

Critical
e Generally enforce synchronisation via explicit locks
around critical sections (e.g., Java synchronized
methods and statements; pthread mutexes)
e Very limited guarantees about unlocked concurrent Thread A Thread B

access to shared memory

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Limitations of Lock-based Concurrency

e Major problems with lock-based concurrency:

 Difficult to define a memory model that enables good performance, while
allowing programmers to reason about the code

e Difficult to ensure correctness when composing code

» Difficult to enforce correct locking
e Difficult to guarantee freedom from deadlocks

e Failures are silent — errors tend to manifest only under heavy load

e Balancing performance and correctness difficult — easy to over- or under-
lock systems

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Composition of Lock-based Code

e Correctness of small-scale code using locks can be ensured by careful coding
(at least in theory)

A more fundamental issue: lock-based code does not compose to larger scale

Assume a correctly locked bank account class, with _F’:eemp;i_ortl extp?ses
methods to credit and debit money from an account niermediate siate
Want to take money from al and move it to a2, aldeb:l.t(v) """

without exposing an intermediate state where 'a2.credit (v) .

the money is in neither account e

Can’t be done without locking all other access
to al and a2 while the transfer is in progress

The individual operations are correct, but the combined operation is not

e This is lack of abstraction a limitation of the lock-based concurrency model,
and cannot be fixed by careful coding

e Locking requirements form part of the API of an object

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Alternative Concurrency Models

e Concurrency increasingly important
e Multicore systems now ubiquitous

e Asynchronous interactions between software and hardware devices

e Threads and synchronisation primitives problematic

e Are there alternatives that avoid these issues?

e Message passing systems and actor-based languages

e Transactional memory coupled with functional languages (e.g., Haskell) for
automatic rollback and retry of transactions

10

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Implications for Operating System Design

e Asingle kernel instance may not be appropriate
e Memory isn’t shared — don't pretend it is!
 There may be no single “central” processor to initialise the kernel

 How to coordinate the kernel between peer processors?

e Multicore processors are increasing distributed systems at heart —
can we embrace this?

11

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

The Multi-kernel Model

e Build a distributed system that can use shared memory where
possible as an optimisation, rather than a system that relies on
shared memory

 The model is no longer that of a single operating system; rather a
collection of cooperating kernels

App App APp APP ® Three design principles for a multi-
:———L—————l —————— | I | I - kernel operating system
Agreement 1 | OS node OS node OS node /] ,\ OS node
algorithms 1 | [State State state | Async messages N[State e Make all inter-core communication explicit
: replica replica replica \] l/ replica
e Make OS structure hardware neutral

Arch-specific :
coce --T—-- ----------------------- ?— e View state as replicated instead of shared

Heterogeneous | gg x64 ARM oo GPU

cores
< Interconnect >

12

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Principle 1: Explicit Communication

e Multi-kernel model relies on message passing

e The only shared memory used by the kernels is that used to implement
message passing (user-space programs can request shared memory in the
usual way, if desired)

e Strict isolation of kernel instances can be enforced by hardware
e Share immutable data — message passing, not shared state

e Latency of message passing is explicitly visible

e Leads to asynchronous designs, since it becomes obvious where the system will block
waiting for a synchronous reply

o Differs from conventional kernels which are primarily synchronous, since latencies are
invisible
o Kernels become simpler to verify — explicit communication can be validated
using formals methods developed for network protocols

13

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Principle 2: Hardware Neutral Kernels

 Write clean, portable, code wherever possible

e Low-level hardware access is necessarily processor/system specific

e Message passing is performance critical: should use of system-specific
optimisations where necessary

e Device drivers and much other kernel code can be generic and portable —
better suited for heterogeneity

e Highly-optimised code is difficult to port
» Optimisations tend to tie it to the details of a particular platform

e The more variety of hardware platforms a multi-kernel must operate on, the better it is to
have acceptable performance everywhere, than high-performance on one platform, poor
elsewhere

e Hardware is changing faster than system software

14

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Principle 3: Replicated State

A multi-kernel does not share state between cores
o A/l data structures are local to each core

* Anything needing global coordination must be managed using a distributed
protocol

e This includes things like the scheduler run-queues, network sockets, etc.

e e.g., thereis no way to list all running processes, without sending each core a message
asking for its list, then combining the results

e Adistributed system of cooperating kernels, not a single multiprocessor
kernel

15

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Multi-kernel Example: Barrelfish

e Implementation of multi-kernel model for Aop App Avp App
x86 NUMA systems o AT Mortor | | Montr | <Z———C [Wonir |
» CPU drivers epece: |_aver | | amer | ~~semwr > e
. . . Hardware: |00 % CF:(SE/;-%IC S x80-64
e Enforces memory protection, authorisation, S Cache-coherence, | griit

Interrupts

and the security model
 Schedules user-space processes for its core

e Mediates access to the core and associated e Microkernel: network stack, memory
hardware (MMU, APIC, etc.) allocation via capability system, etc.,

: : .. all run in user space
* Provides inter-process communication for P

applications on the core Message passing tuned to details of
AMD HyperTransport links and x86

cache-coherency protocols — highly
system specific

* Implementation is completely event-driven,
single-threaded, and non-preemptable

e ~7500 lines of code (C + assembler)

e Monitors

o Coordinate system-wide state across cores

e Applications written to a subset of the
POSIX APIs

16

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Further Reading and Discussion

e A. Baumann et al., “The Multikernel: A new OS

architecture for scalable multicore systems”, Proc.
ACM SOSP 2009. DOI:10.1145/1629575.1629579

o Barrelfish is clearly an extreme: a shared-nothing
system implemented on a hardware platform that
permits some efficient sharing

e |s it better to start with a shared-nothing model, and
implement sharing as an optimisation, or start with a
shared-state system, and introduce message passing?

 Where is the boundary for a Barrelfish-like system?

e Distinction between a distributed multi-kernel and a
distributed system of networked computers?

The Multikernel: A new OS architecture for scalable multicore systems

Andrew Baumann; Paul Barham! Pierre-Evariste Dagand? Tim Harris{ Rebecca Isaacs!
Simon Peter; Timothy Roscoe; Adrian Schiipbach; and Akhilesh Singhania®

“Systems Group, ETH Zurich

"Microsoft Research, Cambridge

Abstract

Commodity computer systems contain more and more
processor cores and exhibit increasingly diverse archi-
tectural tradeoffs, including memory hierarchies, inter-
connects, instruction sets and variants, and IO configu-
rations. Previous high-performance computing systems
have scaled in specific cases, but the dynamic nature of
modern client and server workloads, coupled with the
impossibility of statically optimizing an OS for all work-
loads and hardware variants pose serious challenges for
operating system structures.

We argue that the challenge of future multicore hard-
ware is best met by embracing the networked nature of
the machine, rethinking OS architecture using ideas from
distributed systems. We investigate a new OS structure,
the multikernel, that treats the machine as a network of
independent cores, assumes no inter-core sharing at the
lowest level, and moves traditional OS functionality to
a distributed system of processes that communicate via
message-passing.

We have implemented a multikernel OS to show that
the approach is promising, and we describe how tradi-
tional scalability problems for operating
as memory management) can be effectively res
messages and can exploit insights from distributed sys-
tems and networking. An evaluation of our prototype on
multicore s shows that, even on present-day ma-
chines, the performance of a multikernel is comparable
with a conventional OS, and can scale better to support
future hardware.

1 Introduction

Computer hardware is changing and diversifying faster
than system software. A diverse mix of cores, caches, in-
terconnect links, IO devices and accelerators, combined
with increasing core counts, leads to substantial scalabil-
ity and correctness challenges for OS designers.

fENS Cachan Bretagne

S s e sl o e o

Agreement

algorithms !

Archspecifc
code

Figure 1: The multikernel model.

Such hardware, while in some regards similar to ear-
lier parallel systems, is new in the general-purpose com-
puting domain. We increasingly find multicore systems
in a variety of environments ranging from personal com-
puting platforms to data centers, with workloads that are
less predictable, and often more OS-intensive, than tradi-
tional high-performance computing applications. It is no
longer acceptable (or useful) to tune a general-purpose
OS design for a particular hardware model: the deployed
hardware varies wildly, and optimizations become obso-
lete after a few years when new hardware arrives.

Moreover, these optimizations involve tradeoffs spe-
cific to hardware parameters such as the cache hierarchy,
the memory consistency model, and relative costs of lo-
cal and remote cache access, and so are not portable be-
tween different hardware types. Often, they are not even

to future g of the same i
Typically, because of these difficulties, a scalability prob-
lem must affect a substantial group of users before it will
receive developer attention.

‘We attribute these engineering difficulties to the ba-
sic structure of a shared-memory kernel with data struc-
tures protected by locks, and in this paper we argue for
rethinking the structure of the OS as a distributed sys-
tem of functional units communicating via explicit mes-

17

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://dx.doi.org/10.1145/1629575.1629579

