
Colin Perkins | https://csperkins.org/ | Copyright © 2017 | This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-nd/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Region-based Memory Management

Advanced Operating Systems
Lecture 6

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Lecture Outline

• Rationale

• Stack-based memory management

• Region-based memory management
• Ownership

• Borrowing

• Benefits and limitations

2

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Rationale

• Garbage collection tends to have unpredictable timing and high
memory overhead
• Real-time collectors exist, but are uncommon and have significant design

implications for applications using them

• Manual memory management is too error prone

• Region-based memory management aims for a middle ground
between the two approaches
• Safe, predictable timing

• Limited impact on application design

3

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Stack-based Memory Management

• Automatic allocation/deallocation of variables on the stack is
common and efficient:
#include <math.h>
#include <stdio.h>
#include <stdlib.h>

static double pi = 3.14159;

static double conic_area(double w, double h) {
 double r = w / 2.0;
 double a = pi * r * (r + sqrt(h*h + r*r));

 return a;
}

int main() {
 double width = 3;
 double height = 2;
 double area = conic_area(width, height);

 printf("area of cone = %f\n", area);

 return 0;
}

4

Global variables

double pi = 3.14159

Stack frame for main()

double width = …
double height = …
double area = …

Stack frame for conic_area()

double w = …
double h = …
double r = …
double a = …

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Stack-based Memory Management

• Hierarchy of regions corresponding to call stack:
• Global variables

• Local variables in each function

• Lexically scoped variables within functions

• Variables live within regions, and are deallocated at end of region
scope

5

double vector_avg(double *vec, int len) {
 double sum = 0;

 for (int i = 0; i < len; i++) {
 sum += vec[i];
 }

 return sum / len;
}

Lifetime of sum – local variable in function

Lifetime of i – lexically scoped

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Stack-based Memory Management

• Limitation: requires data to be allocated on stack
• Example:

The local variable tmp (pointer of type char *) is freed when the function
returns; the allocated memory is not freed

• Heap storage has to be managed manually

6

int hostname_matches(char *requested, char *host, char *domain) {
 char *tmp = malloc(strlen(host) + strlen(domain) + 2);

 sprintf(tmp, “%s.%s”, host, domain);

 if (strcmp(requested, host) == 0) {
 return 1;
 }
 if (strcmp(requested, tmp) == 0) {
 return 1;
 }
 return 0;
}

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Region-based Memory Allocation

• Stack allocation effective within a narrow domain – can we extend
the ideas to manage the heap?
• Create pointers to heap allocated memory

• Pointers are stored on the stack and have lifetime matching the stack frame
– pointers have type Box<T> for a pointer to heap allocated T

• The heap allocation has lifetime matching that of the Box – when the Box
goes out of scope, the heap memory it references is freed
• i.e., the destructor of the Box<T> frees the heap allocated T

• This is RAII, to C++ programmers

• Efficient, but loses generality of heap allocation since ties heap
allocation to stack frames

7

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Region-based Memory Management

• For effective region-based memory management:
• Allocate objects with lifetimes corresponding to regions

• Track object ownership, and changes of ownership:
• What region owns each object at any time

• Ownership of objects can move between regions

• Deallocate objects at the end of the lifetime of their owning region
• Use scoping rules to ensure objects are not referenced after deallocation

• Example: the Rust programming language
• Builds on previous research with Cyclone language (AT&T/Cornell)

• Somewhat similar ideas in Microsoft’s Singularity operating system

8

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Returning Ownership of Data

• Returning data from a function causes it to outlive the region in
which it was created:

9

const PI: f64 = 3.14159;

fn area_of_cone(w : f64, h : f64) -> f64 {
 let r = w / 2.0;
 let a = PI * r * (r + (h*h + r*r).sqrt());

 return a;
}

fn main() {
 let width = 3.0;
 let height = 2.0;

 let area = area_of_cone(width, height);

 println!("area = {}", area);
}

Lifetime of a

Lifetime of local variables
in area_of_cone

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Returning Ownership of Data

• Runtime must track changes in ownership as data is returned
• Copies made of stack-allocated local variables; original deallocated, copy

has lifetime of stack-allocated local variable in calling function

• Allows us to return a copy of a Box<T> that references a heap allocated
value of type T
• Effective with a reference counting implementation

• Creating the new Box<T> temporarily increases the reference count on the heap-
allocated T

• The original box is then immediately deallocated, reducing the reference count again

• (An optimised runtime can eliminate the changes to the reference count)

• The heap-allocated T is deallocated when the box goes out of scope of the outer region

• Allows data to be passed around, if it always has a single owner

10

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Giving Ownership of Data

• Ownership of parameters passed
to a function is transferred to that
function
• Deallocated when function ends,

unless it returns the data

• Data cannot be later used by the
calling function – enforced at compile
time

% cat consume.rs
fn consume(mut x : Vec<u32>) {
 x.push(1);
}

fn main() {
 let mut a = Vec::new();

 a.push(1);
 a.push(2);

 consume(a);

 println!("a.len() = {}", a.len());
}

% rustc consume.rs
consume.rs:15:28: 15:29 error: use of moved value: `a` [E0382]
consume.rs:15 println!("a.len() = {}", a.len());
 ^

11

Ownership of a transferred to consume()

Lifetime of a

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Borrowing Data

• Functions can borrow references to
data owned by an enclosing scope
• Does not transfer ownership of the data

• Naïvely safe to use, since live longer
than the function

• Can also return references to input
parameters passed as references
• Safe, since these references must live

longer than the function

12

% cat borrow.rs
fn borrow(mut x : &mut Vec<u32>) {
 x.push(1);
}

fn main() {
 let mut a = Vec::new();

 a.push(1);
 a.push(2);

 borrow(&mut a);

 println!("a.len() = {}", a.len());
}

% rustc borrow.rs
% ./borrow
a.len() = 3
%

A mutable reference

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Problems with Naïve Borrowing

• The borrow() function changes
the contents of the vector

• But – it cannot know whether it is
safe to do so

• In this example, it is safe

• If main() was iterating over the
contents of the vector, changing the
contents might lead to elements being
skipped or duplicated, or to a result to
be calculated with inconsistent data

• Known as iterator invalidation

13

% cat borrow.rs
fn borrow(mut x : &mut Vec<u32>) {
 x.push(1);
}

fn main() {
 let mut a = Vec::new();

 a.push(1);
 a.push(2);

 borrow(&mut a);

 println!("a.len() = {}", a.len());
}

% rustc borrow.rs
% ./borrow
a.len() = 3
%

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Safe Borrowing

• Rust has two kinds of pointer:
• &T – a shared reference to an

immutable object of type T

• &mut T – a unique reference to a
mutable object of type T

• Runtime system controls pointer
ownership and use
• An object of type T can be referenced

by one or more references of type &T,
or by exactly 1 reference of type &mut
T, but not both

• Cannot get an &mut T reference to
data of type T that is marked as
immutable

• Allows functions to safely borrow
objects – without needing to give
away ownership

• To change an object:
• You either own the object, and it is not

marked as immutable; or

• You have the only &mut reference to it

• Prevents iterator invalidation
• The iterator requires an &T reference,

so other code can’t get a mutable
reference to the contents to change
them:

• enforced at compile time

14

fn main() {
 let mut data = vec![1, 2, 3, 4, 5, 6];
 for x in &data {
 data.push(2 * x);
 }
}

fails, since push takes
an &mut reference

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Benefits

• Type system tracks ownership, turning run-time bugs into compile-
time errors:
• Prevents memory leaks and use-after-free bugs

• Prevents iterator invalidation

• Prevents race conditions with multiple threads – borrowing rules prevent two
threads from getting references to a mutable object

• Efficient run-time behaviour – timing and memory usage are predictable

15

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Limitations of Region-based Systems

• Can’t express cyclic data structures
• E.g., can’t build a doubly linked list:

• Many languages offer an escape hatch from the ownership rules to allow
these data structures (e.g., raw pointers and unsafe in Rust)

• Can’t express shared ownership of mutable data
• Usually a good thing, since avoids race conditions

• Rust has RefCell<T> that dynamically enforces the borrowing rules (i.e.,
allows upgrading a shared reference to an immutable object into a unique
reference to a mutable object, if it was the only such shared reference)

• Raises a run-time exception if there could be a race condition, rather than
preventing it at compile time

16

b c da
Can’t get mutable reference
to c to add the link to d, since
already referenced by b

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Limitations of Region-based Systems

• Forces programmer to consider object ownership early and
explicitly
• Generally good practice, but increases conceptual load early in design

process – may hinder exploratory programming

17

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Summary

• Region-based memory management with strong  
ownership and borrowing rules
• Efficient and predictable behaviour

• Strong correctness guarantees prevent many common bugs

• Constrains the type of programs that can be written

• Further reading:
• D. Grossman et al., “Region-based memory management in  

Cyclone”, Proc. ACM PLDI, Berlin, Germany, June 2002.  
DOI:10.1145/512529.512563

• You are not expected to read/understand section 4

• What was Cyclone? Did the project’s goals make sense?

• How does the region-based memory management system described differ from that outlined
in the lecture?

• Interactions with the garbage collector?

• Other features added to C?

• Ease of porting C code? Performance?

• Does it make sense to try to extend C with region-based memory management?

18

Region-Based Memory Management in Cyclone ∗

Dan Grossman Greg Morrisett Trevor Jim†

Michael Hicks Yanling Wang James Cheney

Computer Science Department
Cornell University
Ithaca, NY 14853
{danieljg,jgm,mhicks,wangyl,jcheney}@cs.cornell.edu

†AT&T Labs Research
180 Park Avenue
Florham Park, NJ 07932
trevor@research.att.com

ABSTRACT
Cyclone is a type-safe programming language derived from
C. The primary design goal of Cyclone is to let program-
mers control data representation and memory management
without sacrificing type-safety. In this paper, we focus on
the region-based memory management of Cyclone and its
static typing discipline. The design incorporates several ad-
vancements, including support for region subtyping and a
coherent integration with stack allocation and a garbage col-
lector. To support separate compilation, Cyclone requires
programmers to write some explicit region annotations, but
a combination of default annotations, local type inference,
and a novel treatment of region effects reduces this burden.
As a result, we integrate C idioms in a region-based frame-
work. In our experience, porting legacy C to Cyclone has
required altering about 8% of the code; of the changes, only
6% (of the 8%) were region annotations.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features—dynamic storage management

General Terms
Languages

1. INTRODUCTION
Many software systems, including operating systems, de-

vice drivers, file servers, and databases require fine-grained

∗This research was supported in part by Sloan grant BR-
3734; NSF grant 9875536; AFOSR grants F49620-00-1-
0198, F49620-01-1-0298, F49620-00-1-0209, and F49620-01-
1-0312; ONR grant N00014-01-1-0968; and NSF Graduate
Fellowships. Any opinions, findings, and conclusions or rec-
ommendations expressed in this publication are those of the
authors and do not reflect the views of these agencies.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PLDI’02, June 17-19, 2002, Berlin, Germany.
Copyright 2002 ACM 1-58113-463-0/02/0006 ...$5.00.

control over data representation (e.g., field layout) and re-
source management (e.g., memory management). The de
facto language for coding such systems is C. However, in
providing low-level control, C admits a wide class of danger-
ous — and extremely common — safety violations, such as
incorrect type casts, buffer overruns, dangling-pointer deref-
erences, and space leaks. As a result, building large systems
in C, especially ones including third-party extensions, is per-
ilous. Higher-level, type-safe languages avoid these draw-
backs, but in so doing, they often fail to give programmers
the control needed in low-level systems. Moreover, porting
or extending legacy code is often prohibitively expensive.
Therefore, a safe language at the C level of abstraction, with
an easy porting path, would be an attractive option.

Toward this end, we have developed Cyclone [6, 19], a
language designed to be very close to C, but also safe. We
have written or ported over 110,000 lines of Cyclone code,
including the Cyclone compiler, an extensive library, lexer
and parser generators, compression utilities, device drivers,
a multimedia distribution overlay network, a web server,
and many smaller benchmarks. In the process, we identified
many common C idioms that are usually safe, but which the
C type system is too weak to verify. We then augmented the
language with modern features and types so that program-
mers can still use the idioms, but have safety guarantees.

For example, to reduce the need for type casts, Cyclone
has features like parametric polymorphism, subtyping, and
tagged unions. To prevent bounds violations without mak-
ing hidden data-representation changes, Cyclone has a va-
riety of pointer types with different compile-time invariants
and associated run-time checks. Other projects aimed at
making legacy C code safe have addressed these issues with
somewhat different approaches, as discussed in Section 7.

In this paper, we focus on the most novel aspect of Cy-
clone: its system for preventing dangling-pointer derefer-
ences and space leaks. The design addresses several seem-
ingly conflicting goals. Specifically, the system is:

• Sound: Programs never dereference dangling pointers.

• Static: Dereferencing a dangling pointer is a compile-
time error. No run-time checks are needed to deter-
mine if memory has been deallocated.

• Convenient: We minimize the need for explicit pro-
grammer annotations while supporting many C id-
ioms. In particular, many uses of the addresses of local
variables require no modification.

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://dx.doi.org/10.1145/512529.512563

