PL

University

e QfGlang 60 YEARS OF
COMPUTING
AT GLASGOW

School of
Computing Science

Memory Management

Advanced Operating System
Lecture 5

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/

Lecture Outline

e Virtual memory

e Layout of a processes address space
e Stack
e Heap

 Program text, shared libraries, etc.

« Memory management

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Virtual Memory (1)

e Processes see virtual addresses — each process believes it has
access to the entire address space

e Kernel programs the MMU (“memory management unit”) to translate
these into physical addresses, representing real memory — mapping

changed each context switch to another process

Address Physical
translation address
MMU (PA)

ChPUchip
i Virtual

address

: VA

! CPU #»

i 4100

Data word

Main memory

NI RON QO

M-1:

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Virtual Memory (2)

e Virtual-to-physical memory mapping
can be unique or shared

e Unique mappings typical — physical memory
owned by a single process

e Shared mappings allow one read-only copy
of a shared library to be accessed by many
processes

« Memory protection done at page level — each
page can be readable, writable, executable...

 Mapping is on granularity of pages

e Virtual to physical mapping typically a
multi-level process

e Page tables organised as a tree; only entries
that are populated, and their ancestors, exist
to save space

e Translation managed by the kernel — invisible
to applications

Virtual address spaces

0

Process i:

N-1

Process j:

N-1

n-1

Physical memory

0

Address translation

VP 1

>
>

VP 2

T

Shared page

VP 1

VP 2

—

VI

RTUAL ADDRESS

p-1

r VPN 1

VPN 2

VPN k

VPO

Level 1
page table

Level 2
EagetaMe

»

P

-

Level k
page table

» PPN }—‘

PHYSICAL ADDRESS

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Layout of a Processes Address Space

OXFFFFFFFF

e Typical layout of process address space, in

virtual memory Kernel Space

e Program text, data, and global variables at bottom

of address space; heap follows, growing upwards 0xC0000000

o Kernel at top of address space; stack grows down, Stack ¥
below kernel

e Memory mapped files and shared libraries

Memory Mapped Files and Libraries 4
between these

Heap 1

BSS Segment
Data Segment

Program Text

0x00000000

Typical addresses on 32 bit machines =

See also http://duartes.org/qustavo/blog/post/anatomy-of-a-program-in-memory/

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://duartes.org/gustavo/blog/post/anatomy-of-a-program-in-memory/

Program Text, Data, and BSS

OXFFFFFFFF

e Compiled machine code of the program text
typically occupies bottom of address space
 Lowest few pages above address zero reserved to

trap null-pointer dereferences — access will trigger 0%C0000000
kernel trap, killing process with segmentation fault

e Program text is marked read-only

e Data segment contains variables initialised in
the source code

e E.g., static char *hello = “Hello, world!"”;
at the top level of a C program would allocate space
in the data segment

BSS Segment

 Data segment is known at compile time, loaded along At S :
ata Segmen

with program text

Program Text

* BSS segment holds space for uninitialised
global variables

0x00000000

* BSSis “block started by symbol”; name is historical relic

* Initialised to zero by the runtime when the program loads
(C standard requires this for uninitialised static variables)

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

The Stack

e Stack holds function parameters, return
address, and local variables

Starts at high address in memory
Each function called pushes data onto stack, growing

stack downwards towards lower memory addresses Stack ¥

* Parameters for the function; return address; pointer to
previous stack frame; local variables

When the function returns, that data is removed from
the stack, which shrinks

 The stack is managed automatically

The operating system generates the stack frame for
main () when the program starts

The compiler generates the code to manage the stack
when it compiles the program text

The calling convention for functions — how parameters
are pushed onto the stack — is standardised for a
given processor and programming language

* Ownership tracks function execution

OXFFFFFFFF

0xC0000000

0x00000000

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Function Calling Conventions

 Example: code and contents of stack while calling
printf() function

#include <stdio.h> Arguments to main ():
int argc
int char *argv
. Address to return to after main()
main(int argc, char *argv[])
{ _ Local variables for main ()
char greeting[] = “Hello”; char greeting[]
if (argc == 2) { Arguments for printf ()
printf(“%s, %s\n”, greeting, argv[l]); char *format
return O; char *greeting
} else { char *argv[1l]
. Address to return to after printf ()
rintf (“usage: %s <name>\n”, argv[O0]); :
f_e turn (1: g ’ gvi01); Address to previous stack frame
14
} Local variables for printf ()
}

e The address of the previous stack frame is stored
for ease of debugging, so stack trace can be
printed, and so it can easily be restored when
function returns

Colin Perkins | https://csperkins.org/ | Copyright © 2017 8

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Buffer Overflow Attacks

e (Classic buffer overflow attack:

e Language runtime doesn’t check array bounds

« Writing too much data overflows the space Arguments to main ():
int argc

char *argv
Address to return to after main()

allocated to local variables, overwrites function
return address, and following data

 Contents are valid machine code; the overwritten

function return address is made to point to that Local variables for main ()

char greeting]]

code
e When function returns, code written during the Arguments for printf ()
overflow is executed Al e
char *greeting
char *argv[1l]
Address to return to after printf ()
e Solve by marking stack as non-executable, Address to previous stack frame
or randomising start address of stack each Local variables for printf ()
time program runs
e Oruse alanguage that enforces array bounds Local variables stored on stack
checks immediately preceding function return
_ _ address — overflowing local variable
e Various more complex buffer overflow attacks still space will overwrite return address

possible — e.g., see “return-oriented programming”

Colin Perkins | https://csperkins.org/ | Copyright © 2017 9

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

The Heap

OXFFFFFFFF

e EXxplicitly allocated memory located in the heap

e In C, memory allocated usingmalloc()/calloc()

* |n Java, objects allocated using new
0xC0000000

e Starts at a low address in memory

* Consecutive allocations placed at increasing
addresses in memory

* Usually consecutive addresses, although some types Heap 1
of processor require allocations to be aligned to a 32

or 64 bit boundary

* Modernmalloc () implementations typically thread
aware, and can use different regions of the heap for
different threads, to avoid cache sharing

0x00000000
« NUMA systems complicate heap allocation

e Memory management primarily concerned with
managing the heap

10

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Memory Mapped Files

OXFFFFFFFF

* The mmap () system call manipulates virtual
memory mappings

e Common use: allows files to be mapped into
virtual memory 0%C0000000

* Returns a pointer to a memory address that acts as I |

a proxy for the start of the file
 Reads from/writes to subsequent addresses acts on
the underlying file

* File is demand paged from/to disk as needed — only
the parts of the file that are accessed are read into
memory (granularity depends on virtual memory
system — often 4k pages)

e Useful for random access to parts of files

* Can also be used to establish mappings for 0x00000000
new virtual address space — i.e., to allocate
memory

* In modern Unix-like systems, this is how malloc ()
gets memory from the kernel

11

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Shared Libraries

OXFFFFFFFF

e Code for shared libraries also mapped into
memory between heap and stack

e Virtual memory system enforces these are
read-only 0xC0000000

e One copy only_ In physical memory; virtual Memory Mapped Files and Libraries &
address can differ for each process

0x00000000

12

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

The Kernel

OXFFFFFFFF

e Operating system kernel owns top part of the
address space

Kernel Space

e Not accessible to user-space programs — attempting
to read kernel memory gives segmentation violation

0xC0000000

e The syscall instruction in x86_64 assembler
jumps to the kernel, to one of a set of pre-defined
system calls — switches processor to privileged
mode, reconfigures the virtual memory for kernel
mode

» Kernel can read/write memory of user processes

0x00000000

13

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Address Space Layout Randomisation

OXFFFFFFFF

e Relative layout of memory regions generally

fixed — always in the same order
Kernel Space

e Exact locations in memory randomised on
modern operating systems

0xC0000000

e Address of start of stack Stack ¥

 Address of start of heap

Memory Mapped Files and Libraries 4

e Addresses where shared libraries are loaded

e Addresses representing memory mapped files

e Complicates various types of buffer overflow Heap 1

attack if the addresses are unpredictable
BSS Segment

Data Segment

Program Text

0x00000000

Typical addresses on 32 bit machines =

14

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Memory Management

o Stack memory allocated/reclaimed automatically

« Heap memory needs to be explicitly managed

 Memory must be obtained from the kernel, managed by the application, and
freed after use

* Manually using, e.g., malloc() and free()

Implementation historically used sbrk () system call to increase the size of the heap as
needed; modern systems use mmap () to establish new mapping for anonymous memory

The malloc () implementation sub-divides the space allocated by the kernel, using an
internal persistent data structure to track what parts of the space are in use

Fragmentation after free () can be an issue — implementations often sub-divide the
space, with different regions for allocations in different size ranges, to try to address this

Multi-threading can be an issue — implementations often sub-divide the space, with
different threads allocating from different regions, to avoid cache contention

See jemalloc.net for a modern malloc () implementation with good documentation

e Automatically, via region inference, reference counting, or using garbage
collection — see lectures 6-8

15

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://jemalloc.net

