
Colin Perkins | https://csperkins.org/ | Copyright © 2017 | This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-nd/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Memory Management

Advanced Operating System
Lecture 5

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Lecture Outline

• Virtual memory

• Layout of a processes address space
• Stack

• Heap

• Program text, shared libraries, etc.

• Memory management

2

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Virtual Memory (1)

• Processes see virtual addresses – each process believes it has
access to the entire address space

• Kernel programs the MMU (“memory management unit”) to translate
these into physical addresses, representing real memory – mapping
changed each context switch to another process

3

MMU!

Physical!
address!

(PA)!

...!

0:!
1:!

M-1:!

Main memory!

Virtual!
address!

(VA)!CPU!
2:!
3:!
4:!
5:!
6:!
7:!

4100

Data word!

4

CPU chip!
Address!
translation!

Source: Bryant & O’Hallaron, “Computer Systems: A Programmer’s
Perspective”, 3rd Edition, Pearson, 2016. Fig. 9.2. http://csapp.cs.cmu.edu/
3e/figures.html (website grants permission for lecture use with attribution)

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Virtual Memory (2)

• Virtual-to-physical memory mapping
can be unique or shared
• Unique mappings typical – physical memory

owned by a single process

• Shared mappings allow one read-only copy
of a shared library to be accessed by many
processes

• Memory protection done at page level – each
page can be readable, writable, executable…

• Mapping is on granularity of pages

• Virtual to physical mapping typically a
multi-level process
• Page tables organised as a tree; only entries

that are populated, and their ancestors, exist
to save space

• Translation managed by the kernel – invisible
to applications

4

Process i:!

Virtual address spaces! Physical memory!

VP 1!
VP 2!

Process j:!

Address translation!0!

0!

N-1!

0!

N-1!

M-1!

VP 1!
VP 2!

Shared page!

Source: Bryant & O’Hallaron, “Computer Systems: A Programmer’s Perspective”,
3rd Edition, Pearson, 2016. Fig. 9.9. http://csapp.cs.cmu.edu/3e/figures.html
(website grants permission for lecture use with attribution)

Source: Bryant & O’Hallaron, “Computer Systems: A Programmer’s Perspective”,
3rd Edition, Pearson, 2016. Fig. 9.18. http://csapp.cs.cmu.edu/3e/figures.html
(website grants permission for lecture use with attribution)

VPN 1!
0!p-1!n-1!

VPO!VPN 2! ...! VPN k!

PPN!

0!p-1!m-1!

PPO!PPN!

VIRTUAL ADDRESS!

PHYSICAL ADDRESS!

...! ...!
Level 1!

page table!
Level 2!

page table!
Level k!

page table!

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Layout of a Processes Address Space

• Typical layout of process address space, in
virtual memory
• Program text, data, and global variables at bottom

of address space; heap follows, growing upwards

• Kernel at top of address space; stack grows down,
below kernel

• Memory mapped files and shared libraries
between these

5

Kernel Space

Stack ⬇

Memory Mapped Files and Libraries ⬇

Heap ⬆

Program Text

Data Segment
BSS Segment

0x00000000

0xC0000000

0xFFFFFFFF

Typical addresses on 32 bit machines

See also http://duartes.org/gustavo/blog/post/anatomy-of-a-program-in-memory/

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://duartes.org/gustavo/blog/post/anatomy-of-a-program-in-memory/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Program Text, Data, and BSS

• Compiled machine code of the program text
typically occupies bottom of address space
• Lowest few pages above address zero reserved to  

trap null-pointer dereferences – access will trigger  
kernel trap, killing process with segmentation fault

• Program text is marked read-only

• Data segment contains variables initialised in  
the source code
• E.g., static char *hello = “Hello, world!”;  

at the top level of a C program would allocate space  
in the data segment

• Data segment is known at compile time, loaded along  
with program text

• BSS segment holds space for uninitialised  
global variables
• BSS is “block started by symbol”; name is historical relic

• Initialised to zero by the runtime when the program loads
(C standard requires this for uninitialised static variables)

6

Kernel Space

Stack ⬇

Memory Mapped Files and Libraries ⬇

Heap ⬆

Program Text

Data Segment
BSS Segment

0x00000000

0xC0000000

0xFFFFFFFF

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

The Stack

• Stack holds function parameters, return
address, and local variables
• Starts at high address in memory

• Each function called pushes data onto stack, growing
stack downwards towards lower memory addresses
• Parameters for the function; return address; pointer to

previous stack frame; local variables

• When the function returns, that data is removed from
the stack, which shrinks

• The stack is managed automatically
• The operating system generates the stack frame for

main() when the program starts

• The compiler generates the code to manage the stack
when it compiles the program text

• The calling convention for functions – how parameters
are pushed onto the stack – is standardised for a
given processor and programming language

• Ownership tracks function execution

7

Kernel Space

Stack ⬇

Memory Mapped Files and Libraries ⬇

Heap ⬆

Program Text

Data Segment
BSS Segment

0x00000000

0xC0000000

0xFFFFFFFF

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Function Calling Conventions

• Example: code and contents of stack while calling
printf() function

• The address of the previous stack frame is stored
for ease of debugging, so stack trace can be
printed, and so it can easily be restored when
function returns

8

Arguments to main():
 int argc
 char *argv
Address to return to after main()

Local variables for main()
 char greeting[]

Arguments for printf()
 char *format
 char *greeting
 char *argv[1]
Address to return to after printf()
Address to previous stack frame

Local variables for printf()
 …

#include <stdio.h>

int
main(int argc, char *argv[])
{
 char greeting[] = “Hello”;

 if (argc == 2) {
 printf(“%s, %s\n”, greeting, argv[1]);
 return 0;
 } else {
 printf(“usage: %s <name>\n”, argv[0]);
 return 1;
 }
}

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Buffer Overflow Attacks

• Classic buffer overflow attack:
• Language runtime doesn’t check array bounds

• Writing too much data overflows the space
allocated to local variables, overwrites function
return address, and following data

• Contents are valid machine code; the overwritten
function return address is made to point to that
code

• When function returns, code written during the
overflow is executed

• Solve by marking stack as non-executable,
or randomising start address of stack each
time program runs

• Or use a language that enforces array bounds
checks

• Various more complex buffer overflow attacks still
possible – e.g., see “return-oriented programming”

9

Arguments to main():
 int argc
 char *argv
Address to return to after main()

Local variables for main()
 char greeting[]

Arguments for printf()
 char *format
 char *greeting
 char *argv[1]
Address to return to after printf()
Address to previous stack frame

Local variables for printf()
 …

Local variables stored on stack
immediately preceding function return
address – overflowing local variable
space will overwrite return address

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

The Heap

• Explicitly allocated memory located in the heap
• In C, memory allocated using malloc()/calloc()

• In Java, objects allocated using new

• …

• Starts at a low address in memory

• Consecutive allocations placed at increasing
addresses in memory
• Usually consecutive addresses, although some types

of processor require allocations to be aligned to a 32
or 64 bit boundary

• Modern malloc() implementations typically thread
aware, and can use different regions of the heap for
different threads, to avoid cache sharing

• NUMA systems complicate heap allocation

• Memory management primarily concerned with
managing the heap

10

Kernel Space

Stack ⬇

Memory Mapped Files and Libraries ⬇

Heap ⬆

Program Text

Data Segment
BSS Segment

0x00000000

0xC0000000

0xFFFFFFFF

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Memory Mapped Files

• The mmap() system call manipulates virtual
memory mappings

• Common use: allows files to be mapped into
virtual memory
• Returns a pointer to a memory address that acts as

a proxy for the start of the file

• Reads from/writes to subsequent addresses acts on
the underlying file

• File is demand paged from/to disk as needed – only
the parts of the file that are accessed are read into
memory (granularity depends on virtual memory
system – often 4k pages)

• Useful for random access to parts of files

• Can also be used to establish mappings for
new virtual address space – i.e., to allocate
memory
• In modern Unix-like systems, this is how malloc()

gets memory from the kernel

11

Kernel Space

Stack ⬇

Memory Mapped Files and Libraries ⬇

Heap ⬆

Program Text

Data Segment
BSS Segment

0x00000000

0xC0000000

0xFFFFFFFF

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Shared Libraries

• Code for shared libraries also mapped into
memory between heap and stack

• Virtual memory system enforces these are
read-only

• One copy only in physical memory; virtual
address can differ for each process

12

Kernel Space

Stack ⬇

Memory Mapped Files and Libraries ⬇

Heap ⬆

Program Text

Data Segment
BSS Segment

0x00000000

0xC0000000

0xFFFFFFFF

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

The Kernel

• Operating system kernel owns top part of the
address space
• Not accessible to user-space programs – attempting

to read kernel memory gives segmentation violation

• The syscall instruction in x86_64 assembler
jumps to the kernel, to one of a set of pre-defined
system calls – switches processor to privileged
mode, reconfigures the virtual memory for kernel
mode

• Kernel can read/write memory of user processes

13

Kernel Space

Stack ⬇

Memory Mapped Files and Libraries ⬇

Heap ⬆

Program Text

Data Segment
BSS Segment

0x00000000

0xC0000000

0xFFFFFFFF

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Address Space Layout Randomisation

• Relative layout of memory regions generally
fixed – always in the same order

• Exact locations in memory randomised on
modern operating systems
• Address of start of stack

• Address of start of heap

• Addresses where shared libraries are loaded

• Addresses representing memory mapped files

• Complicates various types of buffer overflow
attack if the addresses are unpredictable

14

Kernel Space

Stack ⬇

Memory Mapped Files and Libraries ⬇

Heap ⬆

Program Text

Data Segment
BSS Segment

0x00000000

0xC0000000

0xFFFFFFFF

Typical addresses on 32 bit machines

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Memory Management

• Stack memory allocated/reclaimed automatically

• Heap memory needs to be explicitly managed
• Memory must be obtained from the kernel, managed by the application, and

freed after use

• Manually using, e.g., malloc() and free()
• Implementation historically used sbrk() system call to increase the size of the heap as

needed; modern systems use mmap() to establish new mapping for anonymous memory

• The malloc() implementation sub-divides the space allocated by the kernel, using an
internal persistent data structure to track what parts of the space are in use

• Fragmentation after free() can be an issue – implementations often sub-divide the
space, with different regions for allocations in different size ranges, to try to address this

• Multi-threading can be an issue – implementations often sub-divide the space, with
different threads allocating from different regions, to avoid cache contention

• See jemalloc.net for a modern malloc() implementation with good documentation

• Automatically, via region inference, reference counting, or using garbage
collection – see lectures 6-8

15

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://jemalloc.net

