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Lecture Outline

• Hardware trends and systems performance 
• Moore’s law 

• Dennard Scaling 

• Power constraints 

• System heterogeneity 
• CPU cores, memory, storage, and networking
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The PDP-11/40 and Unix

• The overwhelming majority of modern systems 
run some variant of Unix 
• macOS, iOS, Android, Linux 

• Unix was designed in the early 1970s to run on 
PDP-11/40 minicomputers: 
• “The PDP-11/40 was designed to fit a broad range of 

applications, from small stand alone situations where 
the computer consists of only 8K of memory and a 
processor, to large multi-user, multi-task applications 
requiring up to 124K of addressable memory space. 
Among its major features are a fast central processor 
with a choice of floating point and sophisticated 
memory management, both of which are hardware 
options.” 
https://pdos.csail.mit.edu/6.828/2005/readings/pdp11-40.pdf 

• Unix has proven surprisingly resilient and 
portable – is it still the right model?
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Moore’s Law and Hardware Trends

• Moore’s law has held up well 

• Other features have not: 
• Clock speed 

• Performance per clock cycle 

• Power consumption 

• Starting to reach physical limits
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H. Sutter, “The Free Lunch Is Over: A Fundamental Turn Toward Concurrency 
in Software”, Dr. Dobb's Journal, 30(3), March 2005 (updated with 2009 data) 
http://www.gotw.ca/publications/concurrency-ddj.htm 

More recent data in A. Danowitz et al, “CPU DB: Recording Microprocessor 
History”, Communications of the ACM, 55(4), April 2012, Pages 55-63. DOI: 
10.1145/2133806.2133822 – shows the trends continue into 2012
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Dennard Scaling

• Moore’s law: transistor count, not performance 

• Power consumption driven by Dennard scaling: 
• Power ∝ C⋅F⋅V2 where: 

C is capacitance 
F is clock frequency 
V is voltage 

• Size of transistor directly affects V and C 

• Implies smaller transistors (Moore’s law) allows higher frequency for same 
power consumption 

• Approximation that ignores leakage current 
• Limitations of semiconductor physics that dominate as sizes decreases – 

eventually became dominant source of power consumption 

• Dennard scaling equation no longer applies
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Thermal Throttling

• CPU thermal throttling – cannot 
sustain performance 
• Graph is for Apple A8 SoC 

• Many other processors behave 
similarly 

• Dark silicon – one consequence of 
Moore’s law and breakdown of 
Dennard scaling; can’t power the 
entire chip at once
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Source: arstechnica.com
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Implications of Hardware Trends

• Moore’s law → how much longer? 

• Breakdown in Dennard scaling: 
• Increased thermal throttling 

• Multicore systems 

• Power constraints – mobile and data centre 

• Mobile devices have performance in bursts 

• Data centres scale wider rather than faster
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Heterogeneity

• Range of system designs increasing 
• Data centres 

• PCs and laptops 

• Mobile phones and tablets 

• Wearables 

• IoT 

• Scalability and heterogeneity 
• Due to increasing range of different applications 

• To make effective use of Moore’s law, while subject to power constraints → 
optimise hardware for particular use cases, power only when needed
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Heterogeneity: Processor Architecture

• Heterogeneous multiprocessor: CPU with 
multiple special purpose cores 
• Canonical example → Cell Broadband Engine 

• Asymmetric processing capabilities  
• High-performance and low-power cores on a 

single die (e.g., ARM big.LITTLE model, with 
both Cortex A7 and A15 cores on-die) 

• GPU-like cores for graphics operations, with 
single program multiple data model vs. a more 
traditional multiple program multiple data model 

• Offload for crypto algorithms, TCP stack, etc. 

• Asymmetric memory access models 
• Non-cache coherent 

• Cores explicitly do not share memory 

• Common for mobile phones, games 
consoles, and other non-PC hardware
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Heterogeneity: Memory Hierarchy
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Heterogeneity: Memory Hierarchy

• The traditional view of memory in a computer system: 

• Note:  
• One CPU 

• One memory bus 

• One block of memory 

• Uniform memory access
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Heterogeneity: Memory Hierarchy

• Organisation of a typical modern computer system: 

• Non-uniform memory access (NUMA) 
• Large on-chip cache memory; main memory off-chip, accessed via interconnect 

• Heterogeneity unavoidable, due to the physical layout of the hardware – some memory is 
physically closer to some CPU chips than to others  

• Cache coherency protocols maintain random access illusion 

• Memory access latency varies depending on which core is accessing which memory bank
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To run our benchmarks, we booted the hardware using our bare
Barrelfish kernel. No interrupts, other than the interprocessor in-
terrupt when required, were enabled and no tasks other than the
benchmark were running. Every benchmark was repeated 1,000,000
times, the aggregate measured by the processor’s cycle counter, and
the average taken.

3.1 IPI latency
To learn more about the communication latencies within a modern
PC, we measured the interprocessor interrupt (IPI) latency between
cores in our test systems. IPI is one example of direct communi-
cation between cores, and can be important for OS messaging and
synchronisation operations.

IPI roundtrip latency was measured using IPI ping-pong. In-
cluded in the total number of ticks is the code overhead needed to
send the IPI and to acknowledge the last interrupt in the APIC. For
our measurements, this overhead is not relevant, because we are
interested in the differences rather than absolute latencies.

We measured the various IPI latencies on our two systems; the
results are shown in Tables 1 and 2. As expected, sending an IPI
between two cores on the same socket is faster than sending to a
different socket, and sending an IPI to a core on the same die (in
the Intel case) is the fastest operation. The differences are of the

Roundtrip Latency
Ticks µ sec

Same Die 1096 0.41
Same Socket 1160 0.43
Different Socket 1265 0.47

Table 1. IPI latencies on the Intel system

Roundtrip Latency
Ticks µ sec

Same Socket 794 0.28
Different Socket 879 0.31

Table 2. IPI latencies on the AMD system

order of 10–15%. These may be significant, but it seems plausible
that a simple OS abstraction on this hardware that treats all cores
the same will not suffer severe performance loss over one that is
aware of the interconnect topology.

3.2 Memory hierarchy
Modern multicore systems often have CPU-local memory, to re-
duce memory contention and shared bus load. In such NUMA sys-
tems, it is possible to access non-local memory, and these accesses
are cache-coherent, but they require significantly more time than
accesses to local memory.

We measured the differences in memory access time from the
four cores on our AMD-based system. Each socket in this system
is connected to two banks of local memory while the other two
banks are accessed over the HyperTransport bus between the two
sockets. Our system has 8 gigabytes of memory installed evenly
across the four available memory banks. The benchmark accesses
memory within two gigabyte regions to measure its the latency. The
memory regions were accessed through uncached mappings, and
were touched before starting to prime the TLB. This benchmark
was executed on all four cores.

Table 3 shows the results as average latencies per core and mem-
ory region. As can be seen, the differences are significant. We
also ran the same benchmark on the Intel-based SMP system. As
expected, the latencies were the same (299 cycles) for every core.

Memory access is one case where current hardware shows sub-
stantial diversity, and not surprisingly is therefore where most of
the current scalability work on commodity operating systems has
focused.

3.3 Device access
In systems (such as our AMD machine) with more of a network-
like interconnect, the time to access devices depending on core.
Modern systems, such as our AMD machine, have more than one
PCI root complex; cores near the root complex have faster access to

Memory region Core 0 Core 1 Core 2 Core 3
0–2GB 192 192 319 323
2–4GB 192 192 319 323
4–6GB 323 323 191 192
6–8GB 323 323 191 192

Table 3. Memory access latencies (in cycles) on the AMD system

A. Schüpbach, et al., Embracing diversity in the Barrelfish manycore operating system. 
Proc. Workshop on Managed Many-Core Systems, Boston, MA, USA, June 2008. ACM.
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To run our benchmarks, we booted the hardware using our bare
Barrelfish kernel. No interrupts, other than the interprocessor in-
terrupt when required, were enabled and no tasks other than the
benchmark were running. Every benchmark was repeated 1,000,000
times, the aggregate measured by the processor’s cycle counter, and
the average taken.

3.1 IPI latency
To learn more about the communication latencies within a modern
PC, we measured the interprocessor interrupt (IPI) latency between
cores in our test systems. IPI is one example of direct communi-
cation between cores, and can be important for OS messaging and
synchronisation operations.

IPI roundtrip latency was measured using IPI ping-pong. In-
cluded in the total number of ticks is the code overhead needed to
send the IPI and to acknowledge the last interrupt in the APIC. For
our measurements, this overhead is not relevant, because we are
interested in the differences rather than absolute latencies.

We measured the various IPI latencies on our two systems; the
results are shown in Tables 1 and 2. As expected, sending an IPI
between two cores on the same socket is faster than sending to a
different socket, and sending an IPI to a core on the same die (in
the Intel case) is the fastest operation. The differences are of the

Roundtrip Latency
Ticks µ sec

Same Die 1096 0.41
Same Socket 1160 0.43
Different Socket 1265 0.47

Table 1. IPI latencies on the Intel system

Roundtrip Latency
Ticks µ sec

Same Socket 794 0.28
Different Socket 879 0.31

Table 2. IPI latencies on the AMD system

order of 10–15%. These may be significant, but it seems plausible
that a simple OS abstraction on this hardware that treats all cores
the same will not suffer severe performance loss over one that is
aware of the interconnect topology.

3.2 Memory hierarchy
Modern multicore systems often have CPU-local memory, to re-
duce memory contention and shared bus load. In such NUMA sys-
tems, it is possible to access non-local memory, and these accesses
are cache-coherent, but they require significantly more time than
accesses to local memory.

We measured the differences in memory access time from the
four cores on our AMD-based system. Each socket in this system
is connected to two banks of local memory while the other two
banks are accessed over the HyperTransport bus between the two
sockets. Our system has 8 gigabytes of memory installed evenly
across the four available memory banks. The benchmark accesses
memory within two gigabyte regions to measure its the latency. The
memory regions were accessed through uncached mappings, and
were touched before starting to prime the TLB. This benchmark
was executed on all four cores.

Table 3 shows the results as average latencies per core and mem-
ory region. As can be seen, the differences are significant. We
also ran the same benchmark on the Intel-based SMP system. As
expected, the latencies were the same (299 cycles) for every core.

Memory access is one case where current hardware shows sub-
stantial diversity, and not surprisingly is therefore where most of
the current scalability work on commodity operating systems has
focused.

3.3 Device access
In systems (such as our AMD machine) with more of a network-
like interconnect, the time to access devices depending on core.
Modern systems, such as our AMD machine, have more than one
PCI root complex; cores near the root complex have faster access to

Memory region Core 0 Core 1 Core 2 Core 3
0–2GB 192 192 319 323
2–4GB 192 192 319 323
4–6GB 323 323 191 192
6–8GB 323 323 191 192

Table 3. Memory access latencies (in cycles) on the AMD system
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Heterogeneity: Storage

• Hard disks → solid state disks 
• No moving parts 

• True random access – hard disk seek time varies with physical movement of disk heads 

• Lower latency, higher throughput 

• Lower power consumption 

• Wear levelling and block-level FEC – limited number of write cycles 

• Sophisticated controller hidden in the SSD – embedded computer, not device driver
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Source: Intel
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Heterogeneity: Networking

• Network performance has caught up with  
CPU performance 
• DMA-based ring-buffer interface to NIC 

• Zero copy from packet reception to user space 

• Protocol header processing and kernel data structures  
are a significant cost – difficult to keep up with line rate  
processing of small packets on high speed links 

• Pushing towards different device driver and network  
APIs – sockets API a bottleneck 

• Increasing range of interface types: wired and wireless 

• Wireless and mobility expose the limitations of TCP 
congestion control and service model 

• Multiple interfaces, wireless, and mobility push towards 
multipath protocols, protocols for path discovery and 
edge-to-network communication, and new APIs

15

of a 1 Gbit/s link.
Other, equally important, metrics are safety of op-

eration and ease of use. netmap clients cannot possi-
bly crash the system, because device registers and crit-
ical kernel memory regions are not exposed to clients,
and they cannot inject bogus memory pointers in the
kernel (these are often vulnerabilities of other schemes
based on shared memory). At the same time, netmap
uses an extremely simple data model well suited to zero-
copy packet forwarding; supports multi-queue adapters;
and uses standard system calls (select()/poll()) for
event notification. All this makes it very easy to port ex-
isting applications to the new mechanism, and to write
new ones that make effective use of the netmap API.

In this paper we will focus on the architecture and fea-
tures of netmap, and on its core performance. In a re-
lated Infocom paper [19] we address a different prob-
lem: (how) can applications make good use of a fast I/O
subsystem such as netmap ? [19] shows that significant
performance bottlenecks may emerge in the applications
themselves, although in some cases we can remove them
and make good use of the new infrastructure.

In the rest of this paper, Section 2 gives some back-
ground on current network stack architecture and per-
formance. Section 3 presents related work, illustrating
some of the techniques that netmap integrates and ex-
tends. Section 4 describes netmap in detail. Performance
data are presented in Section 5. Finally, Section 6 dis-
cusses open issues and our plans for future work.

2 Background

There has always been interest in using general pur-
pose hardware and Operating Systems to run applica-
tions such as software switches [15], routers [6, 4, 5],
firewalls, traffic monitors, intrusion detection systems, or
traffic generators. While providing a convenient develop-
ment and runtime environment, such OSes normally do
not offer efficient mechanisms to access raw packet data
at high packet rates. This Section illustrates the organi-
zation of the network stack in general purpose OSes and
shows the processing costs of the various stages.

2.1 NIC data structures and operation

Network adapters (NICs) normally manage incoming
and outgoing packets through circular queues (rings) of
buffer descriptors, as in Figure 1. Each slot in the ring
contains the length and physical address of the buffer.
CPU-accessible registers in the NIC indicate the portion
of the ring available for transmission or reception.

On reception, incoming packets are stored in the next
available buffer (possibly split in multiple fragments),
and length/status information is written back to the slot

NIC ring

phy_addr
len

head

tail

NIC registers Buffers mbufs

...
v_addr

Hardware Operating system

Figure 1: Typical NIC’s data structures and their relation
with the OS data structures.

to indicate the availability of new data. Interrupts notify
the CPU of these events. On the transmit side, the NIC
expects the OS to fill buffers with data to be sent. The
request to send new packets is issued by writing into the
registers of the NIC, which in turn starts sending packets
marked as available in the TX ring.

At high packet rates, interrupt processing can be ex-
pensive and possibly lead to the so-called “receive live-
lock” [16], or inability to perform any useful work above
a certain load. Polling device drivers [10, 16, 18] and
the hardware interrupt mitigation implemented in recent
NICs solve this problem.

Some high speed NICs support multiple transmit and
receive rings. This helps spreading the load on multi-
ple CPU cores, eases on-NIC traffic filtering, and helps
decoupling virtual machines sharing the same hardware.

2.2 Kernel and user APIs

The OS maintains shadow copies of the NIC’s data
structures. Buffers are linked to OS-specific, device-
independent containers (mbufs [22] or equivalent struc-
tures such as sk buffs and NdisPackets). These con-
tainers include large amounts of metadata about each
packet: size, source or destination interface, and at-
tributes and flags to indicate how the buffers should be
processed by the NIC and the OS.

Driver/OS: The software interface between device
drivers and the OS usually assumes that packets, in both
directions, can be split into an arbitrary number of frag-
ments; both the device drivers and the host stack must be
prepared to handle the fragmentation. The same API also
expects that subsystems may retain packets for deferred
processing, hence buffers and metadata cannot be simply
passed by reference during function calls, but they must
be copied or reference-counted. This flexibility is paid
with a significant overhead at runtime.

These API contracts, perhaps appropriate 20-30 years
ago when they were designed, are far too expensive for
today’s systems. The cost of allocating, managing and

2

From: L. Rizzo, “netmap: a novel framework for fast packet I/O”, Proc. 
USENIX Annual Technical Conference, Boston, MA, USA, June 2012.
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Discussion

• Systems are increasingly heterogenous, and quite different to those 
used when the OS was designed 

• How should change the programming model?  

• Are we using appropriate programming languages, tools, and 
operating systems architectures?
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