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Systems Programming

 Why is systems-level programming different?
e Systems programs interact with hardware
e Systems programs have memory and data layout constraints
e Systems programs strongly driven by bulk I/O performance

e Systems programs maintain long-lived, concurrently accessed, state

 We are used to high-level programming, ignoring low-level details
— the details matter when writing systems programs
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Challenges

e Operating systems are evolving:

e more power constrained

e more real-time applications
e more embedded

e more concurrent

e more safety critical

e more security critical

* Are C and Unix the right programming model for the operating
systems of the future?
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Challenges: Power Constraints

 Many systems run on constrained hardware

e May have limits on power consumption (e.g., battery powered)
 May have to be physically small and/or robust
 May have strict heat production limits

 May have strict cost constraints

e Used to throwing hardware at a problem, writing inefficient — but
easy to implement — software

e Software engineering based around programmer productivity

e Constraints differ in embedded systems — optimise for correctness, cost,
then programmer productivity
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Challenges: Ensuring Predictable Timing

e Real-time systems — scheduling theory can prove correctness, if
system timing predictable

 Numerous sources of unpredictability

Timing variation due to dependence on algorithm input values — measure
Blocking due to resource access

Preemption by higher priority tasks or interrupt handlers

Processor cache improves average timing, with poor worst-case bounds
Virtual memory — address translation, paging, memory protection

Memory allocation and management —malloc () or garbage collector

* Avoid by defensive programming

Disable or avoid features that cause timing variation

Optimise for predictability, not raw performance
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Challenges: Embedded Systems

e Constraints on embedded systems:

 Must interact with hardware to manipulate their environment — custom device
drivers and low-level hardware access in application code

e Safety critical or simply hard to upgrade — strong correctness constraints

e Often resource constrained, with a low-level programming model

 |ssues differ from those inherent in traditional desktop application
programming


http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Device Drivers

..................................................................

layout, endianness, and meaning of bit fields within register short reserved

short dev_func

* Devices represented by bit fields at known address SEuet l rrore . 4
« Bit-level manipulation to access fields in control register iiiit 223_%1 ;1;;

. . : hort don : 1

e Code needs memory address and size of control register, g Ryl izqienable L1

: 3

. 2;

1;

short dev_enable :

* C allows definition of bit fields and explicit access to |, ctrl reg
particular memory addresses via pointers —needed i, .o
for implementation of device drivers K -

.
4

ctrl reg *r = 0x80000024; |
ctrl reg tmp; '

e [llusion of portability — standard C does not specify:

tmp = *r;
* Size of basic types (e.g., a char is not required to be 8 bits, ifp(tmp.k?usy == 0) {
an int is not required to be 32 bits, etc.) f:P:;anfnable =1;
 Bit and byte ordering } sliean 4 g
. . . i return O;
e Alignment or atomicity of memory access 5}

e Each environment defines these — e.g., <stdint.h> and Example: hardware access in C
<limits.h> — but type checking is limited

* Device drivers written in C a frequent source of bugs

* Other languages (e.g., Ada, Rust) provide strict
definitions and allow stronger type checking
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Sources of Bugs in Device Drivers (1)

Name Description Total faults D.ewc.e prot. S./W Protocol Concurrency Generic faults
violations violations faults
USB drivers

rtI8150 rtI8 150 USB-to-Ethernet adapter 16 3 2 7 4

catc el1210a USB-to-Ethernet adapter 2 1 0 1 0
kaweth kl5kusb101 USB-to-Ethernet adapter 15 1 2 8 4

usb net generic USB network driver 45 16 9 6 14
usb hub USB hub 67 27 16 13 11

usb serial USB-to-serial converter 50 2 17 13 18
usb storage | USB Mass Storage devices 23 7 5 10 |

IEEE 1394 drivers
eth1394 generic ieee1394 Ethernet driver 22 6 6 ! 6
sbp2 sbp-2 transport protocol 46 18 10 12 6
PCI drivers
mthca InfiniHost InfiniBand adapter 123 52 22 11 38
bnx2 bnx2 network driver 51 35 4 5 7
1810 fb 1810 frame buffer device 16 4 5 2 5
cmipci cmi8338 soundcard 22 17 3 1 1
Total 498 189 (38%) 101 (20%) 93 (19%) 115 (23%)
yd N

N

Can we address these through improvements to
the supporting infrastructure for device-drivers?

-~

Fix through device documentation and better
language support for low-level programming?

Summary cause of bugs found in Linux USB, Firewire (IEEE 1394), and PCI drivers from 2002-2008
[from L. Ryzhyk et al., “Dingo: Taming device drivers”, Proc. EuroSys 2009, DOI 10.1145/1519065.1519095]

Device protocol violations are mis-programming of the hardware, software protocol violations and
concurrency faults are invalid interactions with the rest of the Linux kernel
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Sources of Bugs in Device Drivers (2)

e \What causes software protocol violations and Type of faults #
. Ordering violations

concurren Cy fa u Its . Driver configuration protocol violation 16

) i i . . Data protocol violation 9

e Misunderstanding or misuse of the device driver Resource ownership protocol violation g

API, especia”y iNn uncommon code paths (eg ., Power management protocol violation 8

Hot unplug protocol violation 5

error handling, hot-plug, power management)

Format violations

e Incorrect use of locks leading to race conditions ;ﬂcorrect use of OS data structures . ?g
assing an 1incorrect argument to an Service
and deadlocks Returning invalid error code 7

Table 2. Types of software protocol violations.

. ] | Type of faults ‘ # |

i Bad pI’OQ rammlng and pOOF dOCU mentatlon Race or deadlock ?n configuration functions 29

of kernel APIs and locking requirements? e |

. Race or deadlock in the data path 7
[ O I error- p rone p rog rammin g | an g u ag es , Race or deadlock in power management functions | 5
. Using uninitialised synchronisation primitive 2
concurrency models, and badly designed Tmbalanced locks 2
k ern el AP I S? Calling an OS service without an appropriate lock | 1

Table 3. Types of concurrency faults.

[from L. Ryzhyk et al., “Dingo: Taming device drivers”,
Proc. EuroSys 2009, DOI 10.1145/1519065.1519095]
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Improving Device Drivers — Engineering

 Model device drivers in object-oriented manner

Device drivers generally fit some hierarchy

Use object-oriented language; encode common logic into a superclass,
instantiated by device-specific subclasses that encode hardware details

 May be able to encode protocol state machines in the superclass, and leave the details of
the hardware access to subclasses (e.g., for Ethernet or USB drivers)

e May be able to abstract some of the details of the locking, if hardware similar enough

Might require multiple inheritance or mixins to encode all the details of the
hardware, especially for multi-function devices

* Implementation choices — device driver framework

e Linux kernel implements this model in C, with much boilerplate

e MacOS X uses restricted subset of C++ within kernel — simplifies driver

development by encoding high-level semantics within framework, leaves
only device-specific details to individual drivers

........................................................................................................................................................................

EAppIe Inc. “I/O Kit Fundamentals”, 2007
: http://developer.apple. com/llbrary/mac/documentatlon/DewceDrlvers/ConceptuaI/IOKltFundamentals/IOKltFundamentals pdf
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Improving Device Drivers — State Models

e An ad-hoc device driver model is common

 Many bugs due to poor specification and documentation of the model

e Use of object-oriented languages can improve this somewhat, but need
careful integration into C-based kernels

e Possible to formalise design as a state machine

 Make underlying state machine visible in the implementation — MacOS X |/O
Kit models incoming events, but not the states, allowable transitions, or
generated events

e Could formally define full state machine in source code, allow automatic
verification that driver implements the state machine for its device class, and
model checking of the state machine

e Can be implemented within existing languages, by annotating the code

e Fits better with more sophisticated, strongly-typed, languages, that can directly model
system

11
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Improving Device Drivers — State Models

Example: the Singularity operating system from
Microsoft Research

START IDevicelnfo

?RegisterForEvents

|O_CONFIGURE_BEGIN

lInvalidParameters l?SetParameters

|IO_CONFIGURE_ACK

?ConfigurelO lgsUC(;ess

|O_CONFIGURED

?StartIOl ?PacketForReceive

|O_RUNNING

?GetReceivedPacket

G Hunt and J. Larus. “Singularity: Rethinking the software stack”, ACM
.SIGOPS OS Review, 41(2), April 2007. DOI:10.1145/1243418.1243424

contract NicDevice {

}

out message DeviceInfo(...); _
in message RegisterForeEvents(NicEvents.EXp:READY
Q);

in message SetParameters(...);

out message InvalidParameters(...);

out message Success();

in message Startio();

in message Configureio();

in message PacketForRece1ve(byte[] in ExHeap p);
ogt message BadPacketSize(byte[] in ExHeap p, int
m);

in message GetReceivedPacket();

out message ReceivedPacket(Packet * in ExHeap p);
out message NoPacket();

state START: one {
DeviceInfo! - IO_CONFIGURE_BEGIN;

state IO_CONFIGURE_BEGIN: one {
RegisterForeEvents? -
SetParameters? - IO_CONFIGURE_ACK;

state IO_CONFIGURE_ACK: one {
InvalidParameters! - IO_CONFIGURE_BEGIN;
Success! - IO_CONFIGURED;

h

state IO_CONFIGURED: one {
StartIo? - IO_RUNNING;
ConfigureIO? - IO_CONFIGURE_BEGIN;

state IO_RUNNING: one {
PacketForreceive? - (Success! or BadPacketSize!)
- IO_RUNNING;
GetReceivedPacket? -» (ReceivedPacket! or
NoPacket!)
- TO_RUNNING;

_—

Listing 1. Contract to access a network device driver.

12
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Improving Device Drivers — Discussion

e Focus on low-level implementation techniques and high-
performance in many device driver models

 Not necessarily appropriate in embedded systems?

e Raising level of abstraction can reduce error-prone boilerplate,
allow compiler to diagnose problems

13
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Challenges: Correctness and Security

e Systems may be safety or security critical

e Might need to run for many years, in environments where failures
either cause injury or are expensive to fix

 Medical devices, automotive or flight control, industrial machinery
e Can you guarantee your system will run for 10 years without crashing?
e Do you check all the return codes and handle all errors?

e Fail gracefully?

e Security vulnerabilities in networked systems

* Privacy and confidentiality — both of data in transit, and against attacks from
the network

 Any networked service is a potential security risk

14
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Evolving Systems Software

 How to address these challenges?

e Alternative programming models — better languages and tools

e Alternative kernel designs and system architectures

15
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Alternative Programming Models

« Move away from C as an implementation language

e Lack of type- and memory-safety leads to numerous bugs and security
vulnerabilities

e Limited support for concurrency — race conditions, locking problems — makes
it unsuitable for modern machine architectures

 Move towards architectures with a minimal kernel, and strong
isolation between other components of the operating system

 The monolithic part of a kernel is a single failure domain; this needs to be
reduced to a minimum — microkernel architecture

e Easier to debug and manage components when they’re isolated from each
other, and communicate only through well-defined channels

16
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Type- and Memory-Safe Languages

* Type safe language — protects its abstractions

Undefined behaviour prohibited by compiler/type system

The language specification can require that array bounds are
respected, specify the error response to violation, etc.

More sophisticated type systems can catch more complex
errors — e.g., enforce a socket is connected, check that an
input string is correctly escaped to avoid SQL injection, ...

 Requires both compile- and run-time checking

The type system specifies legal properties of the program
“for proving the absence of certain program behaviours”

Some properties can be statically checked by a compiler: a
faulty program will not compile until the bug is fixed

Some properties require run-time checks: failure causes a
controlled error

Doesn’t guarantee system works correctly, but ensures it
fails in a predictable and consistent way

 Doesn't require byte-code virtual machine; can have
efficient implementation

..................................................................

i——>cat tst.c
 #include <stdio.h>

iint main ()
1
: int x;
int a;
int b[13];
int c;

0; x <= 13; x++) { ;

X,

printf("a = %d\n", a);
printf("c = %d\n", c);

return O;

)
i——>gcc -std=c99 tst.c -o tst

i ——>./tst
‘a = 1

ic = 13 €4—

17
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Modularity and Microkernels

e Desirable to separate components of a system, so failure of a
component doesn’t cause failure of the entire system

 Microkernel operating system

o Strip-down monolithic kernel to essential services; run everything else in
user space communicating via message passing API
e This includes devices drivers, network stack, etc.
e Kernel just managing process scheduling, isolation, and message passing

e Widely used in embedded systems, where robustness and flexibility to run
devices for unusual hardware are essential features

e But typically poor performance: frequent context switches expensive, due to
need to cross kernel-user space boundary, manage memory protection, etc.

18
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Strongly Isolated Systems

* A possible solution:

e Microkernel that enforces all code written in a safe language (e.g., by only
executing byte code, no native code)

e This includes device drivers and system services running outside the microkernel

e Type system prevents malicious code obtaining extra permissions by
manipulating memory it doesn’t own — done entirely in software; no need to
use MMU to enforce process separation

e A software isolated message passing process architecture — loosely coupled
and well suited to multicore hardware

e Example: the Singularity operating system from Microsoft Research

e Relies on modern programming language features

e Combination is novel, but individual pieces are well understood

19
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Discussion and Further Reading

e Systems software has unique constraints

e Correctness, robustness, security, performance

Low-level programming model was necessary for efficiency — are there
alternative models for modern systems?

e Further reading:

J. Shapiro, “Programming language challenges in systems codes: why
systems programmers still use C, and what to do about it”, Proc. 3rd
workshop on Programming Languages and Operating Systems, San
Jose, CA, October 2006. DOI:10.1145/1215995.1216004

G. Hunt and J. Larus. “Singularity: Rethinking the software stack”, ACM
SIGOPS OS Review, 41(2), April 2007. DOI:10.1145/1243418.1243424

Read these before the tutorial next week — come prepared to discuss

Programming Language Challenges in Systems Codes
Why Systems Programmers Still Use C, and What to Do About It

Jonathan Shapiro, Ph.D.

Systems Research Laboratory
Department of Computer Science

Jolns Hopkins University
shap@cs jhu.edu

Abstract

There have been major o
over the In

ask why systems programmers continue to largely ignore
these.

the systems programmers? How have the cfforts of the
programming language community been misdirected (from
their perspective)? What can/should the PL community do

e research straddles ¢
this year's PLOS

Tollows are my o this subject, which may or not

represent those of other systems programmers.

1. Introduction

Modern _programming I
Haskell (17) provide newer, stronger
type systems than systems prog sges such as
15 T3] or Ad. [12]. Why hove they boen of 2o il in-
terest to systems developers, and what can/should we do
about it?

os such as ML [16] or

As the primary author of the EROS system [18] and its
os [20], both of which are high-performance
seems fair to characterize myself primarily
as a hardeore systems programmer and seeurity architect
However, thor ae kcltons i my close. Inthe mid-1980s,
my group at Bell Labs developed one of the e
Commercial G-+ applications — perhaps the fst. My caly

with C++ includes the first book on reusable
amming [21, which is cither not wel known or

ously disregarded by my colleag

In this audience I am tempted to plead for mercy on the
grounds of youth and ignorance, but having been an active

Permission to make digital o har

advocate of -+ for so long this entails a cortain degree
of chutzpah. There is hope. Microkernel developers seem to
have abandoned C++ in favor of C. The book s out of print
in most countries, and no longer encourages deviant coding

practices among susceptible young programmers.

A Word About BitC  Brewer et al’s cry that Thirty
Years is Long Enough (6] resonates. Tt really s a bit dis-
hilevel

ssembly
al production
the question:

from the pro-

uags ying to answer this
up at Johns Hopkins has started work on a new pro-
BitC. In talking about this work, we
ed & curious blindness from the PL commu

Wo aooften asked “Why nreyou buiing BICT” Tho taci
asumption seems to be tat if fu

Son about in varying measure sing automated tooks. The
fecling scems to be that everyth are doing s straight-
forward (read: aninteresting). Would that t were o.

nd BitC

are fundamentally

and compiler design, and a

fill regarded as important.”

By the time I left the PL community in 1990, respect for

engineering and tics was fast fading, and today it

is all but gone crete syntax of Standard ML [16]
7]

sense of “transparency

nobody ¥ and semantics,
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Singularity: Rethinking the Software Stack

Galen C. Hunt and James R. Larus
Microsoft Research Redmond

galenh@microsoft.com

ABSTRACT
Every operating system embodics 3 collection of design decisions.
Many of the decisions behind today’s most popular operating

ofhware.olated procesec for prtecion of programs and syiem
based _channels forcommunication

manifestbasd programsfor verfction fsystem prop
deseribe this foundation in detail and sketch the
in experimental systems that build upor i

Keywords

s (MBPS). e

tion domains, manifest-based prog
code tax.

1. INTROD U
Every operating system cmbodics a_collection of design
decisions—some explici, som

the choice of implementatio
model, the security model,
others.

plicit. These decisions include
the program protection
m abstractions, and many

Cotnporsy opruing systes—Windows Lino, Mac 05 X,
and BSD-—share o

ome dsign dacisions  have
withstood the test of time, others hav

ity project started in 2003 to
ly obvious shoricomings of existing

decisions and  increasing]

and memory capacts. Thy were wed only b @ mall gfoup of

modem operting systems e o vl 0 aecommodes e
enormous shift in how computers

1.1 A Journey, not a Des
In the Singularity project, we have

alarity operati

architecture based on

programming lar

fiabl

2 well 2 srong suppon fo sstems programming and

acoring. The sound verification toals deect programmer
velopment cycle,

S 8], i an extonson of C that
tclass support for OS communication

From the beginning, Singularity has been driven by the following
question: what would a software platform look ke if it was
designed from scratch, with the primary goal of improved
dependability and trustworthiness? To this end, we have
championed thre cs. .

verification tools f
Programmer errors are re
development cycle. Third, an improved system architecture stops

the propa; ed_ boundaries,

ust and dependable systems in the future.

a laboratory for experimentation in new design
design solution. While we like to think our current
significant step forward from prior work
we do not see it as an “ideal” system or an end in iself, A
I prototype such as Singularity is intentionally a work in

a laboralory in which we continue o explore

code base represt

provides the base implementation of that foundation. Section 4

Tast three years within the Si
cw opprtuntes i he OS and st d

2. ARCHITECTURAL FOUNDATION

Sinulaity system consissofthre key architctural festures
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