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Systems Programming

• Why is systems-level programming different? 
• Systems programs interact with hardware 

• Systems programs have memory and data layout constraints 

• Systems programs strongly driven by bulk I/O performance 

• Systems programs maintain long-lived, concurrently accessed, state 

• We are used to high-level programming, ignoring low-level details 
→ the details matter when writing systems programs
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Challenges

• Operating systems are evolving: 
• more power constrained 

• more real-time applications 

• more embedded 

• more concurrent 

• more safety critical 

• more security critical 

• Are C and Unix the right programming model for the operating 
systems of the future?
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Challenges: Power Constraints

• Many systems run on constrained hardware 
• May have limits on power consumption (e.g., battery powered) 

• May have to be physically small and/or robust 

• May have strict heat production limits 

• May have strict cost constraints 

• Used to throwing hardware at a problem, writing inefficient – but 
easy to implement – software 
• Software engineering based around programmer productivity 

• Constraints differ in embedded systems – optimise for correctness, cost, 
then programmer productivity
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Challenges: Ensuring Predictable Timing

• Real-time systems → scheduling theory can prove correctness, if 
system timing predictable 

• Numerous sources of unpredictability 
• Timing variation due to dependence on algorithm input values → measure 

• Blocking due to resource access 

• Preemption by higher priority tasks or interrupt handlers 

• Processor cache improves average timing, with poor worst-case bounds 

• Virtual memory – address translation, paging, memory protection 

• Memory allocation and management – malloc() or garbage collector 

• Avoid by defensive programming 
• Disable or avoid features that cause timing variation 

• Optimise for predictability, not raw performance
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Challenges: Embedded Systems

• Constraints on embedded systems:  
• Must interact with hardware to manipulate their environment – custom device 

drivers and low-level hardware access in application code 

• Safety critical or simply hard to upgrade – strong correctness constraints 

• Often resource constrained, with a low-level programming model 

• Issues differ from those inherent in traditional desktop application 
programming
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Device Drivers

• Devices represented by bit fields at known address 
• Bit-level manipulation to access fields in control register 

• Code needs memory address and size of control register, 
layout, endianness, and meaning of bit fields within register 

• C allows definition of bit fields and explicit access to 
particular memory addresses via pointers – needed 
for implementation of device drivers 

• Illusion of portability – standard C does not specify: 
• Size of basic types (e.g., a char is not required to be 8 bits, 

an int is not required to be 32 bits, etc.) 

• Bit and byte ordering 

• Alignment or atomicity of memory access 

• Each environment defines these – e.g., <stdint.h> and 
<limits.h> – but type checking is limited 

• Device drivers written in C a frequent source of bugs 

• Other languages (e.g., Ada, Rust) provide strict 
definitions and allow stronger type checking

7

struct { 
    short errors     : 4; 
    short busy       : 1; 
    short unit_sel   : 3 
    short done       : 1; 
    short irq_enable : 1 
    short reserved   : 3 
    short dev_func   : 2; 
    short dev_enable : 1; 
} ctrl_reg; 

int enable_irq(void) 
{ 
    ctrl_reg *r = 0x80000024; 
    ctrl_reg  tmp; 

    tmp = *r; 
    if (tmp.busy == 0) { 
        tmp.irq_enable = 1; 
        *r = tmp; 
        return 1; 
    } 
    return 0; 
}

Example: hardware access in C
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Sources of Bugs in Device Drivers (1)

8

Name Description Total faults
Device prot.
violations

S/W protocol
violations

Concurrency
faults

Generic faults

USB drivers
rtl8150 rtl8150 USB-to-Ethernet adapter 16 3 2 7 4
catc el1210a USB-to-Ethernet adapter 2 1 0 1 0
kaweth kl5kusb101 USB-to-Ethernet adapter 15 1 2 8 4
usb net generic USB network driver 45 16 9 6 14
usb hub USB hub 67 27 16 13 11
usb serial USB-to-serial converter 50 2 17 13 18
usb storage USB Mass Storage devices 23 7 5 10 1

IEEE 1394 drivers
eth1394 generic ieee1394 Ethernet driver 22 6 6 4 6
sbp2 sbp-2 transport protocol 46 18 10 12 6

PCI drivers
mthca InfiniHost InfiniBand adapter 123 52 22 11 38
bnx2 bnx2 network driver 51 35 4 5 7
i810 fb i810 frame buffer device 16 4 5 2 5
cmipci cmi8338 soundcard 22 17 3 1 1

Total 498 189 (38%) 101 (20%) 93 (19%) 115 (23%)

Table 1. Classified counts of driver faults. The maxima in each row are in bold face. The highlighted cells summarise the
types of faults that we focus on in the rest of the paper.
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Figure 2. Summary of software faults by driver type.

Type of faults #

Race or deadlock in configuration functions 29
Race or deadlock in the hot-unplug handler 26
Calling a blocking function in an atomic context 21
Race or deadlock in the data path 7
Race or deadlock in power management functions 5
Using uninitialised synchronisation primitive 2
Imbalanced locks 2
Calling an OS service without an appropriate lock 1

Table 3. Types of concurrency faults.

3. Dingo device driver architecture
Our driver defect study has revealed areas where better OS
support could improve driver reliability. In particular two
categories of faults are directly related to how the driver in-
teracts with the OS: concurrency faults and software proto-
col violations. Together, these faults constitute 39% of the
defects in our study, and are clearly a significant source of
problems for drivers.

To address these issues, we developed Dingo, a new ar-
chitecture for device drivers that simplifies interaction with
the OS and allows driver developers to focus on the main
task of a driver: controlling the hardware. Dingo achieves
this via two improvements over traditional driver architec-
tures. First, Dingo reduces the amount of concurrency that
the driver must handle by replacing the driver’s traditional
multithreaded model of computation with an event-driven
model. This model eliminates the majority of concurrency-
related driver faults without impacting the performance. Sec-
ond, Dingo provides a formal language for describing driver
software protocols, which avoids confusion and ambiguity,
and helps driver writers implement correct protocols.

Dingo does not attempt to provide solutions to deal with
the other types of defects identified (i.e., device protocol
violations and generic programming faults) since these are
provoked by factors that lie beyond the influence of the OS
and should be eliminated by complementary means such as
those surveyed in Section 10.
Overview of Dingo Dingo specifies a model for commu-
nication between a driver and its environment. Communi-
cation occurs over ports, which are bidirectional message-
based communication points. In a typical implementation,
ports are represented by function tables and messages are
delivered by invoking the corresponding functions. Dingo
guarantees atomic message delivery resulting in a strict or-
dering of all messages exchanged by drivers.

Each port is associated with a protocol, which specifies a
behavioural contract between the driver and the framework.
It defines the messages that can be exchanged over that port
as well as constraints on the ordering, timing and content of
those messages. Every port has exactly one protocol asso-
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Summary cause of bugs found in Linux USB, Firewire (IEEE 1394), and PCI drivers from 2002–2008 
[from L. Ryzhyk et al., “Dingo: Taming device drivers”, Proc. EuroSys 2009, DOI 10.1145/1519065.1519095] 

Device protocol violations are mis-programming of the hardware, software protocol violations and 
concurrency faults are invalid interactions with the rest of the Linux kernel 

Can we address these through improvements to 
the supporting infrastructure for device-drivers?

Fix through device documentation and better 
language support for low-level programming?
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Sources of Bugs in Device Drivers (2)

• What causes software protocol violations and 
concurrency faults? 
• Misunderstanding or misuse of the device driver 

API, especially in uncommon code paths (e.g., 
error handling, hot-plug, power management) 

• Incorrect use of locks leading to race conditions 
and deadlocks 

• Bad programming and poor documentation 
of kernel APIs and locking requirements?  

• Or error-prone programming languages, 
concurrency models, and badly designed 
kernel APIs?

9

We then built a bug database for these drivers by analysing
all changes made to the drivers during the six-year period
from 2002 to 2008. In all we recorded 498 defects in this
database.

In order to identify the main sources of complexity in
device drivers, we distinguish between errors caused by the
complexity of interacting with the device, errors caused by
the complexity of interacting with the operating system, and
generic programming errors. Specifically, we distinguished
the following categories of driver software faults:
Device protocol violations occur when the driver behaves
in a way that violates the required hardware protocol, and
typically result in a failure of the hardware to provide its
required service. These include putting the device into an in-
correct state, mis-interpreting device state, incorrectly pars-
ing or generating data exchanged with the device, issuing
a sequence of commands to the device that violates the de-
vice protocol, specifying incorrect timeout values for device
operations, and endianness violations. Device protocol vio-
lations constitute 38% of the overall defects (Table 1).

According to our study, at least one third of the faults
in device-control logic are caused by poorly documented
device behaviour. Such faults are particularly common when
device documentation is not readily available, and the driver
is produced by reverse engineering a driver from another OS.

A portion of these faults are also caused by devices whose
behaviour deviates from the hardware interface standards
that they are meant to implement. Similar faults are due
to devices that violate their documented behaviour. In both
these cases, drivers that expect hardware to behave according
to the standards or documentation will function incorrectly
and must be fixed by adding appropriate workarounds.
Software protocol violations occur when the driver per-
forms an operation that violates the required protocol with
the OS. This includes all violations of expected order-
ing, format or timing in interactions between the OS and
the driver. These faults are particularly common in error-
handling paths and code paths handling uncommon situa-
tions such as hot-unplug and power management requests,
which are often insufficiently tested.

Examples of ordering violations include forgetting to wait
for a completion callback from an asynchronous data request
(data protocol violation), trying to resume a suspended de-
vice before restoring its PCI power state (power manage-
ment protocol violation), and forgetting to release a resource
or releasing resources in the wrong order (resource owner-
ship protocol violation). Examples of format violations in-
clude incorrectly modifying a data structure shared with the
OS, incorrectly initialising a driver descriptor before passing
it to the OS, and falsely returning a success status from an
operation that failed.

Software protocol violations constitute 20% of the overall
driver defects. Statistics for the frequencies of different types
of protocol violations are shown in Table 2.

Type of faults #

Ordering violations
Driver configuration protocol violation 16
Data protocol violation 9
Resource ownership protocol violation 8
Power management protocol violation 8
Hot unplug protocol violation 5

Format violations
Incorrect use of OS data structures 29
Passing an incorrect argument to an OS service 19
Returning invalid error code 7

Table 2. Types of software protocol violations.

Concurrency faults occur when a driver incorrectly syn-
chronises multiple threads of control executing within it,
causing a race condition or a deadlock.

Unlike the previous bug categories, concurrency bugs are
not related to a particular aspect of the driver functionality,
but rather to the model of computation enforced by the OS
on device drivers. Any non-trivial device driver is involved
in several concurrent activities, including handling I/O re-
quests, processing interrupts, and dealing with power man-
agement and hot-plugging events. Most operating systems
are designed to run these activities in separate threads that
invoke the driver in parallel. This multithreaded model of
computation requires the driver to protect itself from race
conditions using a variety of synchronisation primitives. In
addition, a driver in the kernel environment has to keep track
of the synchronisation context in which it is invoked. For in-
stance, a driver running in the context of an interrupt handler
is not allowed to perform any potentially blocking opera-
tions.

Concurrency management accounts for 19% of the total
number of bugs. In Figure 2 we see that the rate of con-
currency bugs is higher in USB drivers (26.5%) and IEEE
1394 drivers (23.5%) than in PCI drivers (9%). USB and
IEEE 1394 buses support hot-plugging, which introduces a
device disconnect event to the driver interface. Disconnect
happens asynchronously to all other activities, causing race
conditions in all USB and IEEE 1394 drivers covered by our
study. In addition, since these buses are not memory mapped,
communication with the device is based on asynchronous
messages, which adds another degree of concurrency to the
driver logic.

Statistics for different types of concurrency faults are
shown in Table 3. From this we see that concurrency faults
are mostly introduced in situations where a sporadic event,
such as a hot-unplug notification or a configuration request,
occurs while the driver is handling a stream of data requests.
Generic programming faults This category of bugs in-
cludes common coding errors, such as memory allocation er-
rors, typos, missing return value checks, and program logic
errors. These errors account for the remaining 23% of de-
fects.

277

Name Description Total faults
Device prot.
violations

S/W protocol
violations

Concurrency
faults

Generic faults

USB drivers
rtl8150 rtl8150 USB-to-Ethernet adapter 16 3 2 7 4
catc el1210a USB-to-Ethernet adapter 2 1 0 1 0
kaweth kl5kusb101 USB-to-Ethernet adapter 15 1 2 8 4
usb net generic USB network driver 45 16 9 6 14
usb hub USB hub 67 27 16 13 11
usb serial USB-to-serial converter 50 2 17 13 18
usb storage USB Mass Storage devices 23 7 5 10 1

IEEE 1394 drivers
eth1394 generic ieee1394 Ethernet driver 22 6 6 4 6
sbp2 sbp-2 transport protocol 46 18 10 12 6

PCI drivers
mthca InfiniHost InfiniBand adapter 123 52 22 11 38
bnx2 bnx2 network driver 51 35 4 5 7
i810 fb i810 frame buffer device 16 4 5 2 5
cmipci cmi8338 soundcard 22 17 3 1 1

Total 498 189 (38%) 101 (20%) 93 (19%) 115 (23%)

Table 1. Classified counts of driver faults. The maxima in each row are in bold face. The highlighted cells summarise the
types of faults that we focus on in the rest of the paper.
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Figure 2. Summary of software faults by driver type.

Type of faults #

Race or deadlock in configuration functions 29
Race or deadlock in the hot-unplug handler 26
Calling a blocking function in an atomic context 21
Race or deadlock in the data path 7
Race or deadlock in power management functions 5
Using uninitialised synchronisation primitive 2
Imbalanced locks 2
Calling an OS service without an appropriate lock 1

Table 3. Types of concurrency faults.

3. Dingo device driver architecture
Our driver defect study has revealed areas where better OS
support could improve driver reliability. In particular two
categories of faults are directly related to how the driver in-
teracts with the OS: concurrency faults and software proto-
col violations. Together, these faults constitute 39% of the
defects in our study, and are clearly a significant source of
problems for drivers.

To address these issues, we developed Dingo, a new ar-
chitecture for device drivers that simplifies interaction with
the OS and allows driver developers to focus on the main
task of a driver: controlling the hardware. Dingo achieves
this via two improvements over traditional driver architec-
tures. First, Dingo reduces the amount of concurrency that
the driver must handle by replacing the driver’s traditional
multithreaded model of computation with an event-driven
model. This model eliminates the majority of concurrency-
related driver faults without impacting the performance. Sec-
ond, Dingo provides a formal language for describing driver
software protocols, which avoids confusion and ambiguity,
and helps driver writers implement correct protocols.

Dingo does not attempt to provide solutions to deal with
the other types of defects identified (i.e., device protocol
violations and generic programming faults) since these are
provoked by factors that lie beyond the influence of the OS
and should be eliminated by complementary means such as
those surveyed in Section 10.
Overview of Dingo Dingo specifies a model for commu-
nication between a driver and its environment. Communi-
cation occurs over ports, which are bidirectional message-
based communication points. In a typical implementation,
ports are represented by function tables and messages are
delivered by invoking the corresponding functions. Dingo
guarantees atomic message delivery resulting in a strict or-
dering of all messages exchanged by drivers.

Each port is associated with a protocol, which specifies a
behavioural contract between the driver and the framework.
It defines the messages that can be exchanged over that port
as well as constraints on the ordering, timing and content of
those messages. Every port has exactly one protocol asso-
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[from L. Ryzhyk et al., “Dingo: Taming device drivers”, 
Proc. EuroSys 2009, DOI 10.1145/1519065.1519095]
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Improving Device Drivers – Engineering

• Model device drivers in object-oriented manner 
• Device drivers generally fit some hierarchy  

• Use object-oriented language; encode common logic into a superclass, 
instantiated by device-specific subclasses that encode hardware details 
• May be able to encode protocol state machines in the superclass, and leave the details of 

the hardware access to subclasses (e.g., for Ethernet or USB drivers) 

• May be able to abstract some of the details of the locking, if hardware similar enough 

• Might require multiple inheritance or mixins to encode all the details of the 
hardware, especially for multi-function devices 

• Implementation choices – device driver framework 
• Linux kernel implements this model in C, with much boilerplate  

• MacOS X uses restricted subset of C++ within kernel – simplifies driver 
development by encoding high-level semantics within framework, leaves 
only device-specific details to individual drivers

10

Apple, Inc. “I/O Kit Fundamentals”, 2007 
http://developer.apple.com/library/mac/documentation/DeviceDrivers/Conceptual/IOKitFundamentals/IOKitFundamentals.pdf
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Improving Device Drivers – State Models

• An ad-hoc device driver model is common 
• Many bugs due to poor specification and documentation of the model 

• Use of object-oriented languages can improve this somewhat, but need 
careful integration into C-based kernels 

• Possible to formalise design as a state machine 
• Make underlying state machine visible in the implementation – MacOS X I/O 

Kit models incoming events, but not the states, allowable transitions, or 
generated events 

• Could formally define full state machine in source code, allow automatic 
verification that driver implements the state machine for its device class, and 
model checking of the state machine 
• Can be implemented within existing languages, by annotating the code 

• Fits better with more sophisticated, strongly-typed, languages, that can directly model 
system

11
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Improving Device Drivers – State Models

12

G. Hunt and J. Larus. “Singularity: Rethinking the software stack”, ACM 
SIGOPS OS Review, 41(2), April 2007. DOI:10.1145/1243418.1243424

IO_CONFIGURE_ACK

IO_RUNNING

START

IO_CONFIGURE_BEGIN

!DeviceInfo

?RegisterForEvents

?SetParameters!InvalidParameters

IO_CONFIGURED

!Success

?StartIO

?ConfigureIO

?PacketForReceive

?GetReceivedPacket

A key experiment in the Singularity project is to construct an 
entire operating system using SIPs and demonstrate that the 
resulting system is more dependable than a conventional system. 
The results so far are promising. SIPs are cheap enough to fit a 

software development granularity of one developer or 
team per SIP and light-weight enough to provide fault-stop 
boundaries for aberrant behavior. 

2.2 Contract-Based Channels 
All communication between SIPs in Singularity flows through 
contract-based channels. A channel is a bi-directional message 
conduit with exactly two endpoints. A channel provides a lossless, 
in-order message queue. Semantically, each endpoint has a 
receive queue. Sending on an endpoint enqueues a message on the 

queue. A channel endpoint belongs to 
exactly one thread at a time. Only the owning thread 
can dequeue messages from its receive queue or send messages to 
its peer. 
Communication across a channel is described by a channel 
contract. The two ends of a channel are not symmetric in a 
contract. One endpoint is the importing end (Imp) and the other is 
the exporting end (Exp). In the Sing# language, the endpoints are 
distinguished by types C.Imp and C.Exp, respectively, where C is 
the channel contract governing the interaction. 
Channel contracts are declared in the Sing# language. A contract 
consists of message declarations and a set of named protocol 
states. Message declarations state the number and types of 
arguments for each message and an optional message direction. 
Each state specifies the possible message sequences leading to 
other states in the state machine. 
We will explain channel contracts through a condensed version of 
the contract for network device drivers shown in Listing 1. A 
channel contract is written from the perspective of the SIP 
exporting a service and starts in the first listed state. Message 
sequences consist of a message tag and a message direction sign 
(! for Exp to Imp), and (? for Imp to Exp). The message direction 
signs are not strictly necessary if message declarations already 
contain a direction (in, out), but the signs make the state 
machine more human-readable. 
In our example, the first state is START and the network device 
driver starts the conversation by sending the client (probably the 
network stack) information about the device via message 
DeviceInfo. After that the conversation is in the 
IO_CONFIGURE_BEGIN state, where the client must send message 
RegisterForEvents to register another channel for receiving 
events and set various parameters in order to get the conversation 
into the IO_CONFIGURED state. If something goes wrong during 
the parameter setting, the driver can force the client to start the 
configuration again by sending message InvalidParameters.
Once the conversation is in the IO_CONFIGURED state, the client 
can either start I/O (by sending StartIO), or reconfigure the 
driver (ConfigureIO). If I/O is started, the conversation is in 

state IO_RUNNING. In state IO_RUNNING, the client provides the 
driver with packet buffers to be used for incoming packets 
(message PacketForReceive). The driver may respond with 
BadPacketSize, returning the buffer and indicating the size 
expected. This way, the client can provide the driver with a 
number of buffers for incoming packets. The client can ask for 
packets with received data through message GetReceived-
Packet and the driver either returns such a packet via 
ReceivedPacket or states that there are no more packets with 
data (NoPacket). Similar message sequences are present for 
transmitting packets, but we elide them in the example. 
From the channel contract it appears that the client polls the driver 
to retrieve packets. However, we have not yet explained the 
argument of message RegisterForEvents. The argument of 
type NicEvents.Exp:READY describes an Exp channel endpoint 
of contract NicEvents in state READY. This endpoint argument 
establishes a second channel between the client and the network 
driver over which the driver notifies the client of important events 
(such as the beginning of a burst of packet arrivals). The client 
retrieves packets when it is ready through the NicDevice
channel. Figure 2 shows the configuration of channels between 
the client and the network driver. The NicEvents contract 
appears in Listing 2. 

contract NicDevice { 
oout message DeviceInfo(...); 
iin  message RegisterForEvents(NicEvents.Exp:READY 
c); 
iin  message SetParameters(...); 
oout message InvalidParameters(...); 
oout message Success(); 
iin  message StartIO(); 
iin  message ConfigureIO(); 
iin  message PacketForReceive(byte[] in ExHeap p); 
oout message BadPacketSize(byte[] in ExHeap p, int 
m); 
iin  message GetReceivedPacket(); 
oout message ReceivedPacket(Packet * in ExHeap p); 
oout message NoPacket(); 
 
sstate START: one { 

 
} 
sstate IO_CONFIGURE_BEGIN: oone { 

 
 

} 
sstate IO_CONFIGURE_ACK: oone { 

 
IO_CONFIGURED; 

} 
sstate IO_CONFIGURED: oone { 

 
ConfigureIO?  IO_CONFIGURE_BEGIN; 

} 
sstate IO_RUNNING: oone { 

(Success! or BadPacketSize!) 
 

 or 
NoPacket!) 

 
... 

} 
} 

Listing 1. Contract to access a network device driver. 
contract NicEvents { 

eenum NicEventType { 
NoEvent, ReceiveEvent, TransmitEvent, LinkEvent 

} 
 
oout message NicEvent(NicEventType e); 
iin message AckEvent(); 
 
state READY: oone { 

AckEvent? !READY; 
} 

} 

Listing 2. Contract for network device events. 

Figure 2. Channels between a network driver and stack. 

NicDevice

NetStack NIC DriverNicEvents

Imp

Imp

Exp

Exp
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Example: the Singularity operating system from 
Microsoft Research

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://dx.doi.org/10.1145/1243418.1243424


Colin Perkins | https://csperkins.org/ | Copyright © 2017

Improving Device Drivers – Discussion

• Focus on low-level implementation techniques and high-
performance in many device driver models 

• Not necessarily appropriate in embedded systems? 

• Raising level of abstraction can reduce error-prone boilerplate, 
allow compiler to diagnose problems
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Challenges: Correctness and Security

• Systems may be safety or security critical 

• Might need to run for many years, in environments where failures 
either cause injury or are expensive to fix 
• Medical devices, automotive or flight control, industrial machinery 

• Can you guarantee your system will run for 10 years without crashing? 

• Do you check all the return codes and handle all errors? 

• Fail gracefully? 

• Security vulnerabilities in networked systems 
• Privacy and confidentiality – both of data in transit, and against attacks from 

the network 

• Any networked service is a potential security risk

14
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Evolving Systems Software

• How to address these challenges? 
• Alternative programming models – better languages and tools 

• Alternative kernel designs and system architectures

15
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Alternative Programming Models

• Move away from C as an implementation language 
• Lack of type- and memory-safety leads to numerous bugs and security 

vulnerabilities 

• Limited support for concurrency – race conditions, locking problems – makes 
it unsuitable for modern machine architectures 

• Move towards architectures with a minimal kernel, and strong 
isolation between other components of the operating system 
• The monolithic part of a kernel is a single failure domain; this needs to be 

reduced to a minimum → microkernel architecture 

• Easier to debug and manage components when they’re isolated from each 
other, and communicate only through well-defined channels
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Type- and Memory-Safe Languages

• Type safe language → protects its abstractions 
• Undefined behaviour prohibited by compiler/type system 

• The language specification can require that array bounds are 
respected, specify the error response to violation, etc. 

• More sophisticated type systems can catch more complex 
errors – e.g., enforce a socket is connected, check that an 
input string is correctly escaped to avoid SQL injection, … 

• Requires both compile- and run-time checking 
• The type system specifies legal properties of the program 

“for proving the absence of certain program behaviours” 

• Some properties can be statically checked by a compiler: a 
faulty program will not compile until the bug is fixed 

• Some properties require run-time checks: failure causes a 
controlled error 

• Doesn’t guarantee system works correctly, but ensures it 
fails in a predictable and consistent way 

• Doesn’t require byte-code virtual machine; can have 
efficient implementation

17

-->cat tst.c 
#include <stdio.h> 

int main() 
{ 
  int x; 
  int a; 
  int b[13]; 
  int c; 

  a = 1; 
  c = 2; 

  for (x = 0; x <= 13; x++) { 
    b[x] = x; 
  } 

  printf("a = %d\n", a); 
  printf("c = %d\n", c); 
   
  return 0; 
} 
-->gcc -std=c99 tst.c -o tst 
-->./tst 
a = 1 
c = 13 
-->
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Modularity and Microkernels

• Desirable to separate components of a system, so failure of a 
component doesn’t cause failure of the entire system 

• Microkernel operating system 
• Strip-down monolithic kernel to essential services; run everything else in 

user space communicating via message passing API 
• This includes devices drivers, network stack, etc. 

• Kernel just managing process scheduling, isolation, and message passing 

• Widely used in embedded systems, where robustness and flexibility to run 
devices for unusual hardware are essential features 

• But typically poor performance: frequent context switches expensive, due to 
need to cross kernel-user space boundary, manage memory protection, etc.
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Strongly Isolated Systems

• A possible solution: 
• Microkernel that enforces all code written in a safe language (e.g., by only 

executing byte code, no native code) 
• This includes device drivers and system services running outside the microkernel 

• Type system prevents malicious code obtaining extra permissions by 
manipulating memory it doesn’t own – done entirely in software; no need to 
use MMU to enforce process separation 

• A software isolated message passing process architecture – loosely coupled 
and well suited to multicore hardware 

• Example: the Singularity operating system from Microsoft Research 

• Relies on modern programming language features 
• Combination is novel, but individual pieces are well understood
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Discussion and Further Reading

• Systems software has unique constraints 
• Correctness, robustness, security, performance 

• Low-level programming model was necessary for efficiency – are there 
alternative models for modern systems? 

• Further reading: 
• J. Shapiro, “Programming language challenges in systems codes: why 

systems programmers still use C, and what to do about it”, Proc. 3rd 
workshop on Programming Languages and Operating Systems, San 
Jose, CA, October 2006. DOI:10.1145/1215995.1216004 

• G. Hunt and J. Larus. “Singularity: Rethinking the software stack”, ACM 
SIGOPS OS Review, 41(2), April 2007. DOI:10.1145/1243418.1243424 

• Read these before the tutorial next week – come prepared to discuss
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Programming Language Challenges in Systems Codes

Why Systems Programmers Still Use C, and What to Do About It

Jonathan Shapiro, Ph.D.

Systems Research Laboratory
Department of Computer Science

Johns Hopkins University
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Abstract
There have been major advances in programming languages
over the last 20 years. Given this, it seems appropriate to
ask why systems programmers continue to largely ignore
these languages. What are the deficiencies in the eyes of
the systems programmers? How have the e↵orts of the
programming language community been misdirected (from
their perspective)? What can/should the PL community do
address this?

As someone whose research straddles these areas, I was
asked to give a talk at this year’s PLOS workshop. What
follows are my thoughts on this subject, which may or not
represent those of other systems programmers.

1. Introduction

Modern programming languages such as ML [16] or
Haskell [17] provide newer, stronger, and more expressive
type systems than systems programming languages such as
C [15, 13] or Ada [12]. Why have they been of so little in-
terest to systems developers, and what can/should we do
about it?

As the primary author of the EROS system [18] and its
successor Coyotos [20], both of which are high-performance
microkernels, it seems fair to characterize myself primarily
as a hardcore systems programmer and security architect.
However, there are skeletons in my closet. In the mid-1980s,
my group at Bell Labs developed one of the first large
commercial C++ applications — perhaps the first. My early
involvement with C++ includes the first book on reusable
C++ programming [21], which is either not well known or
has been graciously disregarded by my colleagues.

In this audience I am tempted to plead for mercy on the
grounds of youth and ignorance, but having been an active
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advocate of C++ for so long this entails a certain degree
of chutzpah.1 There is hope. Microkernel developers seem to
have abandoned C++ in favor of C. The book is out of print
in most countries, and no longer encourages deviant coding
practices among susceptible young programmers.

A Word About BitC Brewer et al.’s cry that Thirty

Years is Long Enough [6] resonates. It really is a bit dis-
turbing that we are still trying to use a high-level assembly
language created in the early 1970s for critical production
code 35 years later. But Brewer’s lament begs the question:
why has no viable replacement for C emerged from the pro-
gramming languages community? In trying to answer this,
my group at Johns Hopkins has started work on a new pro-
gramming language: BitC. In talking about this work, we
have encountered a curious blindness from the PL commu-
nity.

We are often asked “Why are you building BitC?” The tacit
assumption seems to be that if there is nothing fundamen-
tally new in the language it isn’t interesting. The BitC goal
isn’t to invent a new language or any new language con-
cepts. It is to integrate existing concepts with advances in
prover technology, and reify them in a language that allows
us to build stateful low-level systems codes that we can rea-
son about in varying measure using automated tools. The
feeling seems to be that everything we are doing is straight-
forward (read: uninteresting). Would that it were so.

Systems programming — and BitC — are fundamentally
about engineering rather than programming languages. In
the 1980s, when compiler writers still struggled with inad-
equate machine resources, engineering considerations were
respected criteria for language and compiler design, and a
sense of “transparency” was still regarded as important.2

By the time I left the PL community in 1990, respect for
engineering and pragmatics was fast fading, and today it
is all but gone. The concrete syntax of Standard ML [16]
and Haskell [17] are every bit as bad as C++. It is a curi-
ous measure of the programming language community that
nobody cares. In our pursuit of type theory and semantics,

1 Chutzpah is best defined by example. Chutzpah is when a
person murders both of their parents and then asks the court
for mercy on the grounds that they are an orphan.

2 By “transparent,” I mean implementations in which the pro-
grammer has a relatively direct understanding of machine-level
behavior.

Singularity: Rethinking the Software Stack
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ABSTRACT
Every operating system embodies a collection of design decisions. 
Many of the decisions behind 
systems have remained unchanged, even as hardware and 
software have evolved. Operating systems form the foundation of 
almost every software stack, so inadequacies in present systems 
have a pervasive impact. This paper describes the efforts of the 
Singularity project to re-examine these design choices in light of 
advances in programming languages and verification tools. 
Singularity systems incorporate three key architectural features: 
software-isolated processes for protection of programs and system 
services, contract-based channels for communication, and 
manifest-based programs for verification of system properties. We 
describe this foundation in detail and sketch the ongoing research 
in experimental systems that build upon it.  

Keywords
Operating systems, safe programming languages, program 
verification, program specification, sealed process architecture, 
sealed kernel, software-isolated processes (SIPs), hardware 
protection domains, manifest-based programs (MBPs), unsafe 
code tax. 

1. INTRODUCTION
Every operating system embodies a collection of design 
decisions some explicit, some implicit. These decisions include 
the choice of implementation language, the program protection 
model, the security model, the system abstractions, and many 
others. 
Contemporary operating systems Windows, Linux, Mac OS X, 
and BSD share a large number of design decisions. This 
commonality is not entirely accidental, as these systems are all 
rooted in OS architectures and development tools of the late 

early . Given the common operating 
environments, the same programming language, and similar user 
expectations, it is not surprising that designers of these systems 
made similar decisions. While some design decisions have 
withstood the test of time, others have aged less gracefully.  
The Singularity project started in 2003 to re-examine the design 
decisions and increasingly obvious shortcomings of existing 
systems and software stacks. These shortcomings include: wide-
spread security vulnerabilities; unexpected interactions among 
applications; failures caused by errant extensions, plug-ins, and 
drivers, and a perceived lack of robustness.  
We believe that many of these problems are attributable to 
systems that have not evolved far beyond the computer 
architectures 

different from today. Computers were extremely limited in speed 
and memory capacity. They were used only by a small group of 
benign technical literati and were rarely networked or connected 
to physical devices. None of these requirements still hold, but 

modern operating systems have not evolved to accommodate the 
enormous shift in how computers are used. 

1.1 A Journey, not a Destination 
In the Singularity project, we have built a new operating system, a 
new programming language, and new software verification tools. 
The Singularity operating system incorporates a new software 
architecture based on software isolation of processes. Our 
programming language, Sing# [8], is an extension of C# that 
provides verifiable, first-class support for OS communication 
primitives as well as strong support for systems programming and 
code factoring. The sound verification tools detect programmer 
errors early in the development cycle. 
From the beginning, Singularity has been driven by the following 
question: what would a software platform look like if it was 
designed from scratch, with the primary goal of improved 
dependability and trustworthiness? To this end, we have 
championed three strategies. First, the pervasive use of safe 
programming languages eliminates many preventable defects, 
such as buffer overruns. Second, the use of sound program 
verification tools further guarantees that entire classes of 
programmer errors are removed from the system early in the 
development cycle. Third, an improved system architecture stops 
the propagation of runtime errors at well-defined boundaries, 
making it easier to achieve robust and correct system behavior. 
Although dependability is difficult to measure in a research 
prototype, our experience has convinced us of the practicality of 
new technologies and design decisions, which we believe will 
lead to more robust and dependable systems in the future.  
Singularity is a laboratory for experimentation in new design 
ideas, not a design solution. While we like to think our current 
code base represents a significant step forward from prior work, 
we do not  or an end in itself. A 
research prototype such as Singularity is intentionally a work in 
progress; it is a laboratory in which we continue to explore 
implementations and trade-offs. 
In the remainder of this paper, we describe the common 
architectural foundation shared by all Singularity systems. Section 
3 describes the implementation of the Singularity kernel which 
provides the base implementation of that foundation. Section 4 
surveys our work over the last three years within the Singularity 
project to explore new opportunities in the OS and system design 
space. Finally, in Section 5, we summarize our work to date and 
discuss areas of future work. 

2. ARCHITECTURAL FOUNDATION 
The Singularity system consists of three key architectural features: 
software-isolated processes, contract-based channels, and 
manifest-based programs. Software-isolated processes provide an 
environment for program execution protected from external 
interference. Contract-based channels enable fast, verifiable 
message-based communication between processes. Manifest-
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