A University
of Glasgow

Tuesday, 7 May 2013
2.00 pm - 4.00 pm
(2 hours)

DEGREES OF MRes, MSc, MSci, MEng, BEng, BSc, MA and MA (Social Sciences)

COMPUTING SCIENCE (M):
ADVANCED OPERATING SYSTEMS

Answer 3 out of 4 questions

This examination paper is worth a total of 60 marks.

You must not leave the examination room within the first hour or the last half-hour of the
examination.

INSTRUCTIONS TO INVIGILATORS: Please collect all exam
question papers and return to the School together with the
exam answer scripts



1.

(a)

(b)

(0

The rate monotonic algorithm is widely used for scheduling sets of independent, preempt-
able, periodic tasks on single processor systems. It has been shown, however, that the
rate monotonic algorithm is non-optimal. Briefly outline what it means for a real-time
scheduling algorithm to be non-optimal.

(2]
One approach to demonstrating the correctness of a rate monotonic schedule for a set of

periodic tasks is by using time demand analysis. Describe how time demand analysis
works, and explain why it is preferable to exhaustive simulation of the system.

[8]
While the rate monotonic algorithm is non-optimal in general, it has been shown to be
optimal for sets of simply periodic tasks where the relative deadline of each task is greater

than or equal to the period of the task. Define what is meant by simply periodic tasks.
Prove that the rate monotonic algorithm is optimal for such tasks.

[10]

1 CONTINUED OVERLEAF



2.

(a)

(b)

(0

Many real-time systems are embedded, and must interact with the wider environment
through the use of custom hardware resources. The mechanism by which tasks that run
on the system can gain access to those resources is controlled by some form of resource
management protocol, for example the priority inheritance protocol or the priority ceiling
protocol. Explain what are the main benefits of the priority ceiling protocol over the pri-
ority inheritance protocol. State what extra information about each task is needed for the
operation of the priority ceiling protocol.

[4]
The stack-based priority ceiling protocol always allocates a resource to a running task that

needs to access that resource. Explain how this protocol ensures there are no resource
conflicts between tasks.

(4]
Access to hardware resources is managed by device drivers. Many operating systems use
an object-oriented design for their device drivers, with an implementation of the design
in C — a language that provides no support for object-oriented programming. The use of
C++ in the MacOS X kernel I/O Kit Framework shows that it is possible to use higher-
level languages within an operating system kernel, but this idea has not found favour in
the industry. Indeed, Linus Torvalds, the inventor of Linux, expressed a common view
when he said “Trust me — writing kernel code in C++ is a...stupid idea” in a message to
the Linux kernel mailing list in 2004. Is Linus right in his criticism of C++ for kernel
development? Discuss the advantages and disadvantages of using a higher-level language,
such as C++, to implement device drivers, compared to the more traditional, C-based,
device driver framework implemented in Linux, and many other systems.

[12]

2 CONTINUED OVERLEAF



3.

(a)

(b)

(0

Many modern systems integrate garbage collection into their run time support libraries.
The mark-sweep algorithm is one of the simplest garbage collection algorithms. Describe
how the mark-sweep algorithm works, and outline three problems that limit the usefulness
of this algorithm.

[10]
An alternative to the mark-sweep algorithm is to use a copying garbage collector. Explain
what data is copied, and what are the source and the destination of the copy. Discuss why

the process of copying the data makes a copying collector more efficient than a mark-sweep
collector.

[7]

Explain why a copying collector cannot be used to implement a conservative garbage col-
lector for the C programming language.

[3]

3 CONTINUED OVERLEAF



4.

(a)

(b)

We discussed the actor model for programming concurrent systems, where the program
comprises a set of shared-nothing processes communicating by the exchange of immutable
messages. Many actor-based systems adopt a let-it-crash approach to error handling,
whereby responsibility for handling failures in a task is pushed to a separate supervisor
task. Discuss whether the let-it-crash model is an appropriate way of providing robustness
in a massively concurrent system, or if in-process error detection and recovery is more
suitable. Your answer should include an explicit discussion of the trade-offs between the
two approaches.

[10]

The introduction of loosely-coupled message-passing operating systems such as Barrelfish
has the potential to blur the boundary between local and remote resources, since it becomes
conceptually as easy to message a cloud-based service as a service running on another
processor in the same hardware chassis. Does the distinction between local and remote
resources matter any more? Discuss, and justify your answer.

[10]

4 END OF QUESTION PAPER



