
Security and Wrap-up

Networked Systems 3
Lecture 18

Lecture Outline

• Security considerations
• Traffic monitoring, confidentiality and authentication

• Validating input data

• Buffer overflow attacks

• Wrap-up

2

Traffic Monitoring

• Possible to intercept traffic on a network

• Many countries monitor traffic, for legal
reasons
• To enable authorised wiretaps by the police, for example

• Much of this is desirable – the are good reasons why law
enforcement need to intercept some traffic

• Edward Snowden revelations show pervasive monitoring
is widespread
• IETF consensus is that “we cannot defend against the most nefarious

actors while allowing monitoring by other actors no matter how
benevolent some might consider them to be, since the actions required
of the attacker are indistinguishable from other attacks” – RFC 7258
“Pervasive Monitoring is an Attack” (https://tools.ietf.org/html/rfc7258)

3

Edward Snowden

Confidentiality

• Must encrypt data to achieve confidentiality

• Two basic approaches
• Symmetric cryptography

• Advanced Encryption Standard (AES)

• Public key cryptography

• The Diffie-Hellman algorithm

• The Rivest-Shamir-Adleman (RSA) algorithm

• Complex mathematics – will not attempt to describe

4

Symmetric Cryptography

• Function converts plain text
into cipher-text
• Fast – suitable for bulk encryption

• Cipher-text is binary data, and may
need base64 encoding

• Conversation is protected by
a secret key
• The same key is used to encrypt as is

used to decrypt

• Key must be kept secret, else security
lost – a problem: how to distribute the
key?

5

“It was a bright cold day in April,
and the clocks were striking
thirteen.”

rX27qrhlM/Pd5UnkpqTuXnJBZecFl!
bP5Xd8ouyAWgCLxZJUD951SaxusX5!
bj0O2P9XkVGGHmmOqByZxu2pU+cCl!
sERzuHKxc

DES Key

/DES Key

“It was a bright cold day in April,
and the clocks were striking
thirteen.”

Public Key Cryptography

• Key split into two parts:
• Public key – is widely distributed

• Private key – must be kept secret

• Encrypt using public key →
need private key to decrypt
• Public keys are published in a well

known directory → solves the key
distribution problem

• Problem: very slow to encrypt and
decrypt

<big blob of encrypted stuff>

“It was a bright cold day in April,
and the clocks were striking
thirteen.”

RSA Public key

/RSA Private key

“It was a bright cold day in April,
and the clocks were striking
thirteen.”

6

Hybrid Cryptography

• Use combination of public-key and symmetric
cryptography for security and performance
• Generate a random, ephemeral, session key that can be used with

symmetric cryptography

• Use a public-key system to securely distribute this session key – relatively
fast, since session key is small

• Encrypt the data using symmetric cryptography, keyed by the session key

• Examples: PGP for email, SSL for web pages

7

Authentication

• Encryption can ensure confidentiality – but how to
tell if a message has been tampered with?
• Use combination of a cryptographic hash and public key cryptography to

produce a digital signature

• Gives some confidence that there is no man-in-the-middle attack in
progress

• Can also be used to prove origin of data

8

Cryptographic Hash Functions

• Generate a fixed length (e.g., 160 bit) hash code of
an arbitrary length input value
• Should not be feasible to derive input value from hash

• Should not be feasible to generate a message with the same hash as
another

• Examples:
• MD5 and SHA-1 (weaknesses found in both – care required!)

• SHA-256

9

MD5(“It was a bright cold day in April, and the clocks were
striking thirteen”) = 2c794fa2698f4b1bc5aa4e290abdf3a5

Digital Signature Algorithms

• Generating a digital signature:
• Generate a cryptographic hash of the data

• Encrypt the hash with your private key to give a digital signature

• Verifying a digital signature:
• Re-calculate the cryptographic hash of the data

• Decrypt the signature using the public key, compare with the calculated
hash value → should match

10

Existing Secure Protocols

• Existing security protocols give confidentiality and
authentication:
• IPsec

• Transport Layer Security (TLS)

• An enhancement to the Secure Sockets Layer (SSL)

• Datagram TLS

• Secure shell (ssh)

• Use them – don’t try to invent your own!

11

Using TLS

• IETF is developing guidelines for how best to use
TLS: https://tools.ietf.org/html/draft-ietf-uta-tls-bcp
• Expected to be published as an RFC soon

• Read this if you use TLS in your application

!

• State-of-the-art in TLS implementations is in flux
• OpenSSL is popular, but poor quality

• Alternatives in rapid development as of early 2015 – not clear which is the
best long term option

12

Validating Input Data

• Networked applications fundamentally dealing with
data supplied by un-trusted third parties
• Data read from the network may not conform to the protocol specification

• Due to ignorance and/or bugs

• Due to malice, and a desire to disrupt services

• Must carefully validate all data before use

13

Malicious User Input

• Beware escape characters in user-supplied data!

• Must sanitise all user-supplied data before use
• Stop malicious users including control characters that might disrupt

operation of any scripting language inside your application

ht
tp

://
xk

cd
.c

om
/3

27
/

14

Buffer Overflow Attacks

• The C programming language doesn’t check array
bounds
• Responsibility of the programmer to ensure bounds are not violated

• Easy to get wrong – typically results in a “core dump”

• What actually happens here?

15

Function Calls and the Stack

// overflow.c!
#include <string.h>!
#include <stdio.h>!
!
static void!
foo(char *src)!
{!
 char dst[12];!
!
 strcpy(dst, src);!
}!
!
int!
main(int argc, char *argv[])!
{!
 char hello[] = "Hello, world\n";!
!
 foo(argv[1]);!
 printf("%s", hello);!
 return 0;!
}!

What happens when argv[1]
is longer than 12 bytes?

16

$ gcc overflow.c -o overflow
$./overflow 123456789012
Hello, world
$./overflow 1234567890123
Abort trap (core dumped)
$

Function Calls and the Stack

// overflow.c!
#include <string.h>!
#include <stdio.h>!
!
static void!
foo(char *src)!
{!
 char dst[12];!
!
 strcpy(dst, src);!
}!
!
int!
main(int argc, char *argv[])!
{!
 char hello[] = "Hello, world\n";!
!
 foo(argv[1]);!
 printf("%s", hello);!
 return 0;!
}!

17

Parameters

Local variables	

for foo(...)

...unused...

0xbfe710fc

0xbfe71108

0xbfe71110

char dst[12]

char *src

Return Address

Local variables	

for main(...)

Example of call stack within
the call to the function foo()

Function Calls and the Stack

• The strcpy() call doesn’t check
array bounds

• Overwrites the function return
address on stack, along with the
following memory locations

• If malicious, we can write
executable code into this space,
set return address to jump into our
code…

Parameters

Local variables	

for foo(...)

...unused...

0xbfe710fc

0xbfe71108

0xbfe71110

char dst[12]

char *src

Example of call stack within
the call to the function foo()18

Return Address

Local variables	

for main(...)

Arbitrary Code Execution

• Buffer overflows in network code are the primary
source of security problems
• If you write network code in C, but very careful to check all array bounds

• If your code can be crashed by network traffic, it probably has an
exploitable buffer overflow

• http://insecure.org/stf/smashstack.html

19

Wrap Up

20

Examination and Revision

• Exam is worth 80% of course mark
• Duration: 1.5 hours

• Rubric: answer all 3 questions

• Copies of past exam papers are on Moodle

!

• No revision lecture – email me with any questions

21

Networked Systems in Level 4

• Three taught modules cover networked systems:
• Advanced Networking and Communications 4

• Distributed Algorithms and Systems 4

• Wireless Sensor Networks 4/M

• Individual projects in networked systems:
• Look for projects supervised by members of the Embedded, Networked,

and Distributed Systems research group

• Talk to us if you’re interested in networking-related projects – we generally
have more project ideas than proposed, and can often suggest something
that fits with your interests

• Level 4 projects in this area can lead to MSci/PhD work, if interested

22

The End

23

