
Presentation & Application Layers

Networked Systems 3 
Lecture 17



Lecture Outline

• Presentation layer 

• Media types and content negotiation 

• Channel encoding 

• Internationalisation 

• Application layer 

• Message syntax and framing 

• Interaction style 

• Signalling Responses

2



The Presentation Layer

• Managing the presentation, representation, and 
conversion of data: 
• Media types and content negotiation 

• Channel encoding and format conversion 

• Internationalisation, languages, and character sets 

• Common services used by many applications

3



Media Types

• Data formats often not self-describing 

• Media types identify the format of the 
data 
• http://www.iana.org/assignments/media-types/ 

• Categorise formats into eight top-level types 

• Each has many sub-types 

• Each sub-type may have parameters: 

!
!
!
!

• Media types included in protocol headers to describe 
format of included data

4

application

audio

video

text

image

message

model

multipart (attachments)

text/plain; charset=iso-8859-1

Sub-type Parameters



Content Negotiation

• Many protocols negotiate 
the media formats used 
• Ensure sender and receiver have 

common format both understand 

• Typically some version of 
an offer-answer exchange 
• The offer lists supported formats in 

order of preference 

• Receiver picks highest preference 
format it understands, includes this 
in its answer 

• Negotiates common format in one 
round-trip time

5

[Offer]  !
v=0!
o=alice 2890844526 2890844526 IN IP4 
a.example.com!
s=!
c=IN IP4 a.example.com!
t=0 0!
m=audio 49170 RTP/AVP 0 8 97!
a=rtpmap:0 PCMU/8000!
a=rtpmap:8 PCMA/8000!
a=rtpmap:97 iLBC/8000!
m=video 51372 RTP/AVP 31 32!
a=rtpmap:31 H261/90000!
a=rtpmap:32 MPV/90000!!
[Answer] !
v=0!
o=bob 2808844564 2808844564 IN IP4 b.example.com!
s=!
c=IN IP4 b.example.com!
t=0 0!
m=audio 49174 RTP/AVP 0!
a=rtpmap:0 PCMU/8000!
m=video 49170 RTP/AVP 32!
a=rtpmap:32 MPV/90000

audio/pcmu; rate=8000



Channel Encoding

• If the protocol is textual, how do you transport 
binary data? 
• Encode binary data in a textual format for transfer 

• What is binary data? What is an appropriate textual format? 

• Signal that the content has been encoded 

• The MIME Content-Transfer-Encoding: header 

• May require negotiation of an appropriate transfer encoding, if data 
passing through several systems

6



What is Binary Data?

• Data that cannot be represented within the textual 
character set in use 
• If using 7 bit ASCII text, any data using all eight bits 

• Example: very old versions of sendmail used the 8th bit to signal that 
quoted data was present, stripping it off data on input, since email was 
guaranteed to be 7 bit ASCII only 

• If using EBCDIC, any unassigned character 

• If using UTF-8, invalid multi-byte sequences 

• Must be encoded to fit the character set in use

7



Sending Binary Data

• Many protocols send binary directly, 
not encoded in textual format 
• E.g. TCP/IP headers, RTP, audio-visual data 

• Two issues to consider: 
• Byte ordering – the Internet is big endian, must 

convert from little-endian PC format 

• Word size – how big is an integer (e.g., 16, 32, or 
64 bit)? how is a floating point value represented?

8

#include <arpa/inet.h>!

uint16_t htons(uint16_t hs);!

uint16_t ntohs(uint16_t ns);!

uint32_t htonl(uint32_t hl);!

uint32_t ntohl(uint32_t nl);



Coding Binary Data for a Textual Channel

• Issues when designing a binary coding scheme: 
• Must be backwards compatible with text-only systems 

• Some systems only support 7-bit ASCII 

• Some systems enforce a maximum line length 

• Must survive translation between character sets 

• Legacy systems using ASCII, national extended ASCII variants, 
EBCDIC, etc. 

• Must not use non-printing characters 

• Must avoid escape characters that might be interpreted by the channel 
(e.g., $ \ # ; & “ ”) 

• If might use escape characters to convert 8-bit values into format 
suitable for the channel, if 8-bit values are rare 

• E.g., quoted-printable encoding uses = as escape character, so that 
the string straße is quoted as stra=dfe (an = is represented as =3d)

9



Base 64 Encoding

• Textual encoding of binary 
• Split each group of 3 bytes (24 bits) 

into four 6-bit values, and encode as 
text using lookup table shown 

• Use = characters to pad if needed 

• Encode no-more than 76 characters 
per line 

!
!
!
!
!

• Average 33% increase in data size 
(3 bytes → 4)

10

000000 A 010000 Q 100000 g 110000 w

000001 B 010001 R 100001 h 110001 x

000010 C 010010 S 100010 i 110010 y

000011 D 010011 T 100011 j 110011 z

000100 E 010100 U 100100 k 110100 0

000101 F 010101 V 100101 l 110101 1

000110 G 010110 W 100110 m 110110 2

000111 H 010111 X 100111 n 110111 3

001000 I 011000 Y 101000 o 111000 4

001001 J 011001 Z 101001 p 111001 5

001010 K 011010 a 101010 q 111010 6

001011 L 011011 b 101011 r 111011 7

001100 M 011100 c 101100 s 111100 8

001101 N 011101 d 101101 t 111101 9

001110 O 011110 e 101110 u 111110 +

001111 P 011110 f 101111 v 111111 /

(pad) =

10010111 01001101 11101011 00001101 01110101

100101 110100 110111 101011 000011 010111 010100

l03rDXU==



Internationalisation (i18n)

• What character set to use? 
• A national character set? ASCII, iso-8859-1, koi-8, etc. 

• Need to identify the character set and the language 

• Complex to convert between character sets 

• Unicode? 

• A single character set that can represent (almost?) all characters, from 
(almost?) all languages 

• 21 bits per character (0x000000 – 0x10FFFF) 

• Several representations (e.g. UTF-8, UTF-32) 

• Just represents characters – still need to identify the language

11



Unicode and UTF-8

• Strong recommendation: Unicode in UTF-8 format 
• UTF-8 is a variable-length coding of unicode characters  

!
!
!
!
!

• Backwards compatible with 7-bit ASCII characters 

• Codes in the ASCII range coded identically, all non-ASCII values are 
coded with high bit set 

• No zero octets occur within UTF-8, so it can be represented as a string 
in C 

• Widely used in Internet standard protocols

12

00000000 00000000 0zzzzzzz    !    0zzzzzzz
00000000 00000yyy yyzzzzzz    !    110yyyyy 10zzzzzz
00000000 xxxxyyyy yyzzzzzz    !    1110xxxx 10yyyyyy 10zzzzzz
000wwwxx xxxxyyyy yyzzzzzz    !    11110www 10xxxxxx 10yyyyyy 10zzzzzz

Unicode character bit pattern: UTF-8 encoding:



Unicode: Things to Remember

• Unicode just codes the characters, need to code 
the language separately 
• Different languages have very different rules! 

• Is text written left-to-right or right-to-left? 

• How to sort? e.g. in German, ä sorts after a, in Swedish, ä sorts after z 

• How to do case conversion and case insensitive comparison? e.g., in 
German, toupper(“straße”) = “STRASSE” 

• How to handle accents? ligatures? ideograms? etc. 

• At the protocol level:  

• Code the characters as UTF-8 and specify the language 

• Let the application-layer programmer worry about using the data!

13



The Application Layer

• Protocol functions specific to the application logic 

• Deliver email 

• Retrieve a web page 

• Stream video 

• …

14



Application Protocol Style

• How is the application protocol data structured? 
• Textual or binary? 

• Framing mechanism? 

• How do the interactions occur? 
• Explicit request-response, or potentially unsolicited? 

• Degree of chatter? 

• How are errors reported?

15



Textual vs Binary Protocol Syntax

• Does the protocol exchange textual or binary 
messages? 
• Textual – flexible and extensible 

• See http://www.ietf.org/rfc/rfc3252.txt – “Binary Lexical Octet Ad-hoc 
Transport” – for a counter example (and note the publication date!) 

• High-level application layer protocols (e.g., email, web, instant 
messaging, …) 

• Binary – highly optimised and efficient 

• Audio and video data (e.g., JPEG, MPEG, Vorbis, …) 

• Low-level or multimedia transport protocols (e.g., TCP/IP, RTP, …) 

• Design for extensibility, rather than optimality

16



Framing over TCP

• How to denote record boundaries? 
• TCP connection is reliable, but doesn’t frame the data; must parse the 

byte stream 

• Requires structured protocol: 

• Textual request-response format: 
send request and headers giving 
details, and receive a structured 
response (e.g., HTTP, SMTP) 

• Tag-stream protocols parse the 
stream until appropriate closing  
tag seen (e.g., Jabber) 

• Binary protocols – TLV structure 

• Trade-off flexibility, extensibility, ease of parsing

17

C: GET /index.html HTTP/1.1!
C: Accept-Language: en-gb!
C: Accept-Encoding: gzip, deflate!
C: Accept: text/xml, text/html, text/plain!
C: User-Agent: Mozilla/5.0 (Macintosh; U; Mac OS X; en-gb) !
C: Cache-Control: max-age=0!
C: Connection: keep-alive!
C: Host: www.dcs.gla.ac.uk!
C: !
S: HTTP/1.1 200 OK!
S: Server: Apache/2.0.46 (Red Hat)!
S: Last-Modified: Mon, 17 Nov 2003 08:06:50 GMT!
S: Accept-Ranges: bytes!
S: Content-Length: 3646!
S: Connection: close!
S: Content-Type: text/html; charset=UTF-8!
S:!
S: <HTML>!
S: <HEAD>!
S: <TITLE>Computing Science, University of Glasgow</TITLE>!
S: ...remainder of page elided...



• UDP provides framing – data is delivered a packet 
at a time – but is unreliable 

• Application must organise the data so it’s useful if 
some packets lost 
• E.g. streaming video with I and P frames

Framing over UDP

18

Time 

Intermediate (predicted) frames Full frame 



Interaction Styles

• How does communication proceed? 
• Does the server announce its presence on the initial connection? Or does 

it wait for the client to start? 

• Is there an explicit request for every response? Can the server send 
unsolicited data? 

• Is there a lot of chatter, or does the communication complete within a 
single round-trip?

19



Reducing Protocol Chatter

• The more “chatty” protocols take many round trips 
to complete a transaction 
• RTT fixed by speed-of-light irrespective of network bandwidth → often 

limiting factor in response time 

• Want to reduce number of round trips before the 
transaction completes → send transaction in single 
request, get a single response

20



Signalling Responses

• Useful to have an extensible framework for 
response codes 

• Many applications settled on a 
three digit numeric code 
• First digit indicates response type 

• Last two digits give specific error 
(or other response) 

• Allows signalling new error types, with meaningful 
response from existing clients 
• Backwards compatibility

Error Code Meaning

1xx In progress

2xx Ok

3xx Redirect

4xx Client error

5xx Server error

21



Summary

• Presentation layer 

• Media types and content negotiation 

• Channel encoding 

• Internationalisation 

• Application layer 

• Message syntax and framing 

• Interaction style 

• Signalling Responses

22


