
Session Layer and DNS

Networked Systems 3
Lecture 16

Lecture Outline

• Higher layer protocols

• The session layer
• Managing connections

• Middleboxes and caches

• Naming users and resources

• The domain name system (DNS)

2

Higher Layer Protocols

• The OSI reference model defines three layers
above the transport layer:
• Session layer

• Presentation layer

• Application layer

• All typically implemented within an application or
library; poorly-defined boundaries between layers

3

Function of the Higher Layers

• To support the needs of the application:
• Setup and manage transport layer connections

• Name and locate application-level resources

• Negotiate supported data formats, performing format conversion as
needed

• Present data in an appropriate manner

• To implement application semantics

4

The Session Layer

• Responsible for managing connections:
• Find users/resources; create transport connections

• Middleboxes and caches

• Responsible for naming resources:
• Uniform resource identifiers

• The Domain Name System (DNS)

5

Managing Connections

• What connections does the application need?

Single client 
and server

Point-to-point
peer-to-peer

Group of clients 
and server

Peer-to-peer
group

Any source multicast group

Broadcast
Single source multicast

Group of clients 
Multiple servers

Server mediated
peer-to-peer

6

Managing Connections

• How to find participants?
• Look-up name in a directory (e.g. DNS, web search engine)

• Server mediated connection (e.g. instant messenger, VoIP call)

• How to setup connections?
• Direct connection to named host (→ NAT issues)

• Mediated service discovery, followed by peer-to-peer connection
• E.g. VoIP using SIP and RTP with ICE

• How does session membership change?
• Does the group size vary greatly? How rapidly do participants join and

leave? Are all participants aware of other group members?

7

User and Resource Mobility

• IP addresses encode location → mobility breaks
transport layer connections

• Session layer must find new location, establish new
connections
• Old location might redirect – e.g., HTTP

• Users might register new location

• Updating a DNS name to point to the new IP address

• Via an application-specific server – e.g., SIP proxy for VoIP calls

8

Example: HTTP redirect

302 response code indicates the content has moved, 
the “Location:” header specifies where it’s moved to.

9

GET /index.html HTTP/1.1!
Host: www.google.com

HTTP request

HTTP/1.1 302 Moved Temporarily!
Location: http://www.google.co.uk/index.html!
Cache-Control: private!
Content-Type: text/html!
Server: gws!
Content-Length: 231!
Date: Sun, 17 Feb 2008 23:23:30 GMT!
!
<HTML><HEAD><meta http-equiv="content-type" content="text/html;charset=utf-8">!
<TITLE>302 Moved</TITLE></HEAD><BODY>!
<H1>302 Moved</H1>!
The document has moved!
here.!
</BODY></HTML>

HTTP response

Multiple Connections

• A single session may span multiple transport
connections
• E.g., retrieving a web page containing images – one connection for the

page, then one per image

• E.g., a peer-to-peer file sharing application, building a distributed hash
table

• Session layer responsible for co-ordinating the
connections

10

Middleboxes and Caches

• Some protocols rely on middleboxes or caches
• Web cache – optimise performance, moving popular content closer to

hosts

• Email server – supports disconnected operation by holding mail until user
connects

• SIP proxy servers and instant messaging servers – locate users, respond
for offline users

• The end-to-end argument applies, once again
• Only add middleboxes when absolutely necessary

11

How to Find the Middlebox?

• Manual configuration

• Look-up in central directory service
• E.g., DNS MX records to find email servers

• Multicast service discovery

• “Transparent” redirection
• E.g., Wi-Fi hotspots that grab web traffic, and redirect to a payment server

12

Naming

• How to identify resources used or referenced by an
application?
• Files, email addresses, phone numbers, objects in a database, books,

parcels being shipped, etc.

• Use a uniform resource identifier

• Uniform resource name (URN) – a unique resource name; no
information on where to find, or how to access, the resource

• Uniform resource locator (URL) – a unique resource name, plus
location and access method

• Directory service used for URN → URL mapping

13

Uniform Resource Identifier
A general mechanism for naming arbitrary resources
!
scheme:authority/path?query#fragment

ftp://ftp.is.co.za/rfc/rfc1808.txt
http://news.bbc.co.uk/2/hi/europe/7249034.stm#map
ldap://[2001:db8::7]/c=GB?objectClass=one
mailto:John.Doe@example.com
news:comp.infosystems.www.servers.unix
tel:+1-816-555-1212
telnet://192.0.2.16:80/
urn:oasis:names:specification:docbook:dtd:xml:4.1.2

Syntax is extremely flexible
!
Wide range of schemes defined
!
Some can be directly accessed, others
require a look-up to map from the URI
to a URL

14

(authority, query and fragment optional)

Domain Name System

• URIs often refer to a host on the network
• Want to use a human-readable hostname in URIs, rather than an IP

address

• The domain name system (DNS) translates from the hostname to an IP
address

• www.dcs.gla.ac.uk → 130.209.240.1

• DNS is an application layer protocol, running over the network

• Not necessary for the correct operation of the transport or network
layers, or lower

15

History of the DNS

• Early Internet didn’t use DNS
• Flat file hosts.txt listing all host names and addresses

• Maintained by central NIC; updated by email every few days; manually
installed in hosts

• DNS proposed in 1983 as distributed  
database of host names
• Solve scaling problems with hosts.txt

Paul Mockapetris

16

Operation of the DNS
[root servers]

.com .org .net .uk .de .fr

.google .apple .co .ac .org .gov.microsoft

.york .ucl .glawwwmaps

.dcswww

www bo720-1-01

• Hierarchy of DNS zones
• One logical server per zone
• Delegation follows hierarchy
• Hop-by-hop name look-up, follows hierarchy via root
• Results have TTL, cached at intermediate servers
• getaddrinfo()

17

Contents of a DNS Zone

$TTL 3600 ; 1 hour!
example.org. IN SOA ns1.example.org. admin.example.org. (!
 2006051501 ; Serial!
 10800 ; Refresh!
 3600 ; Retry!
 604800 ; Expire!
 86400 ; Minimum TTL!
)!
; DNS Servers!
 IN NS ns1.example.org.!
 IN NS ns2.example.org.!
; MX Records!
 IN MX 10 mx.example.org.!
 IN MX 20 mail.example.org.!
; Machine Names!
ns1 IN A 192.168.1.2!
ns2 IN A 192.168.1.3!
mx IN A 192.168.1.4!
mail IN A 192.168.1.5!
mail IN AAAA 2001:200:1000:0:25f:23ff:fe80:1234!
server1 IN A 192.168.1.10!
server2 IN A 192.168.1.11!
; Aliases!
www IN CNAME server1S

ou
rc

e:
 a

da
pt

ed
 fr

om
 T

he
 F

re
eB

S
D

 H
an

db
oo

k

18

How to Perform DNS Lookups

• Prefer using DNS names to raw IP addresses
• Use getaddrinfo() to look-up name in DNS

• Returns a linked list of struct addrinfo values, representing
addresses of the host: 
 
 
 
 
 
 
 
 
 
 
(#include <netdb.h> for definition of struct addrinfo)

struct addrinfo {!
 int ai_flags; // input flags!
 int ai_family; // AF_INET, AF_INET6, ...!
 int ai_socktype; // IPPROTO_TCP, IPPROTO_UDP!
 int ai_protocol; // SOCK_STREAM, SOCK_DRAM, ...!
 socklen_t ai_addrlen; // length of socket-address!
 struct sockaddr *ai_addr; // socket-address for socket!
 char *ai_canonname; // canonical name of host!
 struct addrinfo *ai_next; // pointer to next in list!
};

19

Connecting via a DNS Query
struct addrinfo hints, *ai, *ai0;!
int i;!
!
memset(&hints, 0, sizeof(hints));!
hints.ai_family = PF_UNSPEC;!
hints.ai_socktype = SOCK_STREAM;!
if ((i = getaddrinfo(“www.google.com”, "80", &hints, &ai0)) != 0) {!
 printf("Unable to look up IP address: %s", gai_strerror(i));!
 ...!
}!
!
for (ai = ai0; ai != NULL; ai = ai->ai_next) {!
 fd = socket(ai->ai_family, ai->ai_socktype, ai->ai_protocol);!
 if (fd == -1) {!
 perror("Unable to create socket");!
 continue;!
 }!
!
 if (connect(fd, ai->ai_addr, ai->ai_addrlen) == -1) {!
 perror("Unable to connect");!
 close(fd);!
 continue;!
 }!
 ...success, use the connection!
 break;!
}!
if (ai == NULL) {!
 // Connection failed, handle the failure...!
}

20

DNS Politics

• The DNS was administered by IANA
• Jon Postel was IANA from its creation until his death in 1998

• http://www.ietf.org/rfc/rfc2468.txt – “I remember IANA”

• DNS now managed into ICANN
• The US government asserts ultimate control over ICANN,

and hence the DNS

• Significant attempts to move control of national domains to
the UN, and hence to the countries concerned

• Other attempts to set up alternate roots for the DNS, with
different namespaces → significant technical problems

21

Jon Postel

Summary

• Higher layer protocols

• The session layer
• Managing connections

• Middleboxes and caches

• Naming users and resources

• The domain name system (DNS)

• Performing DNS lookups

• Politics

22

