
UDP and Network Address 
Translation

Networked Systems 3 
Lecture 14



Lecture Outline

• The UDP protocol and datagram sockets 

• Impact of Network Address Translation

2



Using UDP Datagrams

• UDP provides an unreliable datagram service, 
identifying applications via a 16 bit port number 
• UDP ports are separate from TCP ports 

• Often used peer-to-peer (e.g., for VoIP), so both peers must bind() to a 
known port 

• Create via socket() as usual, but specify SOCK_DGRAM as the socket 
type: 

!
!
!

• No need to connect() or accept(), since no connections in UDP

3

int    fd;!
...!
fd = socket(AF_INET, SOCK_DGRAM, 0);



Using UDP Datagrams

4

bind(fd, ..., ...)

Network

Client Server

sendto(fd, data, datalen, addr, addrlen)

recvfrom(fd, buffer, buflen, flags, addr, addrlen)

close(fd)

int fd = socket(...)

Socket

fd

Socket

fd



Sending UDP Datagrams

5

int                  fd;!
char                 buffer[...];!
int                  buflen = sizeof(buffer);!
struct sockaddr_in   addr;!
...!
if (sendto(fd, buffer, buflen, (struct sockaddr *) addr, sizeof(addr)) < 0) {!
    // Error...!
}

The sendto() call sends a single datagram. Each call to sendto() can send 
to a different address, even though they use the same socket.

Alternatively, connect() to an address, then use write() to send the data. 
There is no connection made at the UDP layer, the connect() call only sets 
the destination address for future packets.



Receiving UDP Datagrams

6

The read() call may be used to read a single datagram, but doesn’t provide 
the source address of the datagram. Most code uses recvfrom() instead – 
this fills in the source address of the received datagram:

int               fd;!
char              buffer[...];!
int               buflen = sizeof(buffer);!
struct sockaddr   addr;!
socklen_t         addr_len = sizeof(addr);!
int               rlen;!
...!
rlen = recvfrom(fd, buffer, buflen, 0, &addr, &addrlen);!
if (rlen < 0) {!
    // Error...!
}



UDP Framing and Reliability

• Unlike TCP, each UDP datagram is sent as exactly 
one IP packet (which may be fragmented in IPv4) 
• Each read() corresponds to a single write() 

• But, transmission is unreliable: packets may be 
lost, delayed, reordered, or duplicated in transit 
• The application is responsible for correcting the order, detecting 

duplicates, and repairing loss – if necessary 

• Generally requires the sender to include some form of sequence number 
in each packet sent

7



UDP Guidelines

• Need to implement congestion  
control in applications 
• To avoid congestion collapse of the network 

• Should be approximately fair to TCP 

• RFC 3448 provides one algorithm for doing this 

• Need to provide sequencing, reliability, and timing 
in applications 
• Sequence numbers and acknowledgements 

• Retransmission and/or forward error correction 

• Timing recovery 

• UDP programming guidelines: RFC 5405  
• https://tools.ietf.org/html/rfc5405

8

Packets Sent

P
ac

ke
ts

 D
el

iv
er

ed

Congestion collapse

No useful work done



Network Address Translation

• IPv4 address space is exhausted → lecture 9 

• IPv6 is the long-term solution 

!

• There is a widely deployed work-around: NAT 
(network address translation) 

!

• However, this has serious consequences for the 
transport layer

9



Network Address Translation

• Hide several hosts on a private network behind a 
single public IP address 
• Private IPv4 addresses are 10.0.0.0/8, 192.168.0.0/16, 176.16.0.0/12 

• Rewrite packet headers at network boundary 
• Doesn’t require changes to hosts or routers (other than the NAT) 

• Tries to give the illusion of more address space

Private Network	

!

192.168.0.0/16

NAT	

Router192.0.2.47 192.168.0.1

Host

Host

192.168.0.2

192.168.0.3

Public 
Internet

Host

130.209.247.112

src: 192.168.  0.  3!
dst: 130.209.247.112

src: 192.  0.  2. 47!
dst: 130.209.247.112

10



Network Address Translation

Private Network	

!

192.168.0.0/16

NAT	

Router192.0.2.47 192.168.0.1

Host

Host

192.168.0.2

192.168.0.3

Public 
Internet

Host

130.209.247.112

src: 129.168.  0.  3!
dst: 130.209.247.112

src: 192.  0.  2. 47!
dst: 130.209.247.112

• Myth: applications work unchanged 
• Some client-server applications (e.g., web, email) work without changes 

• But peer-to-peer applications (e.g., VoIP, WebRTC) need extensive changes before 
they work through a NAT (~200 pages spec to describe algorithm!) 

• Myth: provides security 
• Most NATs include a firewall to provide security, the NAT function gives no security 

benefit

11



Implications of NAT for TCP Connections

• Outgoing connection creates state in NAT 
• Need to send data periodically, else NAT state times out 

• Recommended time out interval is 2 hours, many NATs use shorter 

• Server behind NAT requires configured mapping 

• Peer-to-peer connections difficult 
• Simultaneous open with external mapping service

12

Private Network	

!

192.168.0.0/16

NAT	

Router192.0.2.47 192.168.0.1

Host

Host

192.168.0.2

192.168.0.3

Public 
Internet

Host

130.209.247.112

RFC5382



Implications of NAT for UDP Flows

13

Private Network	

!

192.168.0.0/16

NAT	

Router192.0.2.47 192.168.0.1

Host

Host

192.168.0.2

192.168.0.3

Public 
Internet

Host

130.209.247.112• NATs tend to have short time outs for UDP 
• Not connection-oriented, so they can’t detect the end of flows 

• Recommended time out interval is not less than two minutes, but many 
NATs use shorter intervals – the VoIP NAT traversal standards suggest 
sending a keep alive message every 15 seconds 

• Peer-to-peer connections easier than TCP 
• UDP NATs are often more permissive about allowing incoming packets 

than TCP NATs; many allow replies from anywhere to an open port

RFC4787



NAT Traversal Concepts

14

Private Network	

!NAT

Host A

Public 
Internet

Private 
Network	


!

NAT

Host B

Server

Control traffic

Data traffic

• Referral server on the public network used to discover 
external (mapped) address/port on the NAT 

• STUN – RFC 5389 

• Referral server used to exchange possible connection 
addresses with peer 

• Systematically try to make a connection using all 
possible combinations of addresses 

• Every possible network interface and protocol, mapped and local 

• Complex and generates significant traffic overhead 

• The ICE algorithm – RFC 5245



Summary

• UDP and datagram sockets 

• Network address translation 
• Impact on TCP connections 

• Impact on UDP traffic 

• NAT traversal concepts

15


