
TCP

Networked Systems 3
Lecture 13

Lecture Outline

• The Berkeley Sockets API

• The TCP protocol and stream sockets

2

The Berkeley Sockets API

• Widely used low-level C networking API

• First introduced in 4.BSD Unix
• Now available on most platforms: Linux, MacOS X, Windows, FreeBSD,

Solaris, etc.

• Largely compatible cross-platform

!
!

• Recommended reading:
• Stevens, Fenner, and Rudoff, “Unix Network Programming  

volume 1: The Sockets Networking API”, 3rd Edition,  
Addison-Wesley, 2003.

3

Concepts

Network

Socket

Application • Sockets provide a standard
interface between network
and application

• Two types of socket:
• Stream – provides a virtual circuit service

• Datagram – delivers individual packets

• Independent of network type:
• Commonly used with TCP/IP and UDP/IP,

but not specific to the Internet protocols

• Discuss TCP/IP sockets today; UDP next
lecture

4

Creating a socket

#include <sys/socket.h>

int fd;!
...!
fd = socket(family, type, protocol);!
if (fd == -1) {!
 // Error: unable to create socket!
 ...!
}!
...

AF_INET for IPv4
AF_INET6 for IPv6

SOCK_STREAM for TCP
SOCK_DGRAM for UDP

0 (not used for Internet sockets)

Create an unbound socket, not connected to network;
can be used as either a client or a server

#include <sys/types.h>!
#include <sys/socket.h>

5

What is a TCP/IP Connection?

• A reliable byte-stream connection between two
computers
• Most commonly used in a client-server fashion:

• The server listens on a well-known port
• The port is a 16-bit number used to distinguish servers

• E.g. web server listens on port 80, email server on port 25

• The client connects to that port

• Once connection is established, either side can write data into the
connection, where it becomes available for the other side to read

• The Sockets API represents the connection using a
file descriptor

6

Using TCP Connections

7

bind(fd, ..., ...)

Network

Client

int fd = socket(...)

Server

listen(fd, ...)

connfd = accept(fd, ...)

read(connfd, buffer, buflen)

write(connfd, data, datalen)

close(connfd)

connect(fd, ..., ...)

write(fd, data, datalen)

read(fd, buffer, buflen)

close(fd)

int fd = socket(...)

Socket

fd

Socket

fd connfd

?

Implementing a Server: Bind and Listen

• A new socket can become
either client or server

• To implement a server:
• Bind to a port on a network interface

• Specify a well-known port for the service, and
INADDR_ANY to indicate any available network
interface

• Listen for new connections on that port
• The backlog is the maximum number of

connections the socket will queue up, each
waiting to be accept()’ed

#include <sys/types.h>!
#include <sys/socket.h> !
...!
if (bind(fd, addr, addrlen) == -1) {!
 // Error: unable to bind!
 ...!
} !
...!
if (listen(fd, backlog) == -1) {!
 // Error!
 ...!
} !
...

8

Implementing a Server: Accept

• Once the server socket is listening for connections,
call accept() in a loop to accept new connections
in turn: 
 
 
 
 
 
 
 
The connfd is a new file descriptor for this connection 
The original fd remains open, and can be used to accept another connection

9

int connfd;!
struct sockaddr_in cliaddr;!
socklen_t cliaddrlen = sizeof(cliaddr);!
...!
connfd = accept(fd, (struct sockaddr *) &cliaddr, &cliaddrlen);!
if (connfd == -1) {!
 // Error!
 ...!
}!
...

Implementing a Client

• A client doesn’t need to
bind() or listen(),
and simply connects to
the server
• The addr parameter includes the

IP address and port on which the
server is listening

#include <sys/types.h>!
#include <sys/socket.h>!
...!
if (connect(fd, addr, addrlen) == -1) {!
 // Error: unable to open connection!
 ...!
} !
...

10

Specifying IP Addresses

• Specify an address and port  
in bind() and connect()
• The address can be either IPv4 or IPv6

• Addresses for bind() and connect()  
specified via struct sockaddr!

• Could be modelled in C as a union, but the designers of the sockets API
chose to use a number of structs, and abuse casting instead

• The sa_data field is big enough to hold the largest address of any family;
sa_len and sa_family specify the length and type of the address

• Treats address as opaque binary string

11

struct sockaddr {!
 uint8_t sa_len;!
 sa_family_t sa_family;!
 char sa_data[22];!
};

Specifying IP Addresses: IPv4

12

• Two variations exist for IPv4
and IPv6 addresses
• Use struct sockaddr_in to hold

an IPv4 address

• Has the same size and memory layout
as struct sockaddr, but interprets
the bits differently to give structure to
the address

struct in_addr {!
 in_addr_t s_addr;!
};!
!
struct sockaddr_in {!
 uint8_t sin_len;!
 sa_family_t sin_family;!
 in_port_t sin_port;!
 struct in_addr sin_addr;!
 char sin_pad[16];!
};

Specifying IP Addresses: IPv6

13

• Two variations exist for IPv4
and IPv6 addresses
• Use struct sockaddr_in6 to hold

an IPv6 address

• Has the same size and memory layout
as struct sockaddr, but interprets
the bits differently to give structure to
the address

struct in6_addr {!
 uint8_t s6_addr[16];!
};!
!
struct sockaddr_in6 {!
 uint8_t sin6_len;!
 sa_family_t sin6_family;!
 in_port_t sin6_port;!
 uint32_t sin6_flowinfo;!
 struct in6_addr sin6_addr;!
};

Working with IP Addresses

• Work with either struct sockaddr_in or
struct sockaddr_in6

• Cast it to a struct sockaddr before calling
the socket routines
struct sockaddr_in addr;!
...!
// Fill in addr here!
...!
if (bind(fd, (struct sockaddr *) &addr, sizeof(addr)) == -1) {!
 ...

14

Creating an Address: INADDR_ANY

• Servers often just want to listen on the default
address – do this using INADDR_ANY for the
address passed to bind()

• Convert port number using htons(…)

#include <sys/types.h>!
#include <sys/socket.h>!
#include <netinet/in.h>!
#include <arpa/inet.h>

struct sockaddr_in addr;!
...!
addr.sin_addr.s_addr = INADDR_ANY;!
addr.sin_family = AF_INET;!
addr.sin_port = htons(80);!
!
if (bind(fd, (struct sockaddr *)&addr, sizeof(addr)) == -1) {!
 ...

15

Creating an Address: Manually

• Clients want to connect to a specific IP address –
can use inet_pton() to create the address, if
you know the numeric IP address

• Convert port number using htons(…)

#include <sys/types.h>!
#include <sys/socket.h>!
#include <netinet/in.h>!
#include <arpa/inet.h>

struct sockaddr_in addr;!
...!
inet_pton(AF_INET, “130.209.240.1”, &addr.sin_addr);!
addr.sin_family = AF_INET;!
addr.sin_port = htons(80);!
!
if (connect(fd, (struct sockaddr *)&addr, sizeof(addr)) == -1) {!
 ...

16

DON’T DO THIS – USE THE DNS INSTEAD
→ Lecture 16

Role of the TCP Port Number

17

Port Range Name Intended use

0 1023 Well-known (system) ports Trusted operating system services

1024 49151 Registered (user) ports User applications and services

49152 65535 Dynamic (ephemeral) ports Private use, peer-to-peer applications,
source ports for TCP client connections

RFC 6335

• Servers must listen on a known
port; IANA maintains a registry

• Distinction between system and
user ports ill-advised – security
problems resulted

• Insufficient port space available
(>75% of ports are registered)

!

• TCP clients traditionally connect
from a randomly chosen port in
the ephemeral range
• The port must be chosen randomly, to

prevent spoofing attacks

• Many systems use the entire port range
for source ports, to increase the amount
of randomness available

http://www.iana.org/assignments/port-numbers

TCP Connection Setup

18

• Connections use 3-way handshake
• The SYN and ACK flags in the TCP header signal

connection progress

• Initial packet has SYN bit set, includes randomly
chosen initial sequence number

• Reply also has SYN bit set and randomly chosen
sequence number, acknowledges initial packet

• Handshake completed by acknowledgement of
second packet

• Happens during the connect()/accept() calls

• Combination ensures robustness
• Randomly chosen initial sequence numbers give

robustness to delayed packets or restarted hosts

• Acknowledgements ensure reliability

SYN, ACK = x, seq = y

SYN, seq = x

Host A

Ti
m

e

Host B

Ti
m

e

ACK = y

Similar handshake ends connection,
with FIN bits signalling the teardown

Reading and Writing Data

• The read() call reads up to BUFLEN
bytes of data from connection – blocks
until data available

• Returns actual number of bytes read,
or -1 on error

• Data is not null terminated
!
!
!
!
!
!
!

• The write() call sends data over a
socket; blocks until all data can be
written

• Returns actual number of bytes written,
or -1 on error

19

#define BUFLEN 1500!
...!
ssize_t i;!
ssize_t rcount;!
char buf[BUFLEN];!
...!
rcount = read(fd, buf, BUFLEN);!
if (rcount == -1) {!
 // Error has occurred!
 ...!
}!
...!
for (i = 0; i < rcount; i++) {!
 printf(“%c”, buf[i]);!
}

char data[] = “Hello, world!”;!
int datalen = strlen(data);!
...!
if (write(fd, data, datalen) == -1) {!
 // Error has occurred!
 ...!
}!
...

Record Boundaries in TCP Connections

• If the data in a write() is bigger than the data link
layer MTU, TCP will send the data as fragments

• Similarly, multiple small write() requests may be
aggregated into a single TCP packet

• Implication: the data returned by a read() doesn’t
necessarily match that sent in a single write()!
• There often appears to be a correspondence, but this is not guaranteed 

(it may work in the lab, but not when you use it over a different link)

20

Application Level Framing

21

HTTP/1.1 200 OK!
Date: Mon, 19 Jan 2009 22:25:40 GMT!
Server: Apache/2.0.46 (Scientific Linux)!
Last-Modified: Mon, 17 Nov 2003 08:06:50 GMT!
ETag: "57c0cd-e3e-17901a80"!
Accept-Ranges: bytes!
Content-Length: 3646!
Connection: close!
Content-Type: text/html; charset=UTF-8!
!
<HTML>!
<HEAD>!
<TITLE>Computing Science, University of Glasgow </TITLE>!
...!
</BODY>!
</HTML>

Data may arrive in arbitrary sized chunks; must parse and understand 
the data, no matter where it is split by the network – it’s a byte stream
(colours indicate one possible split of the data into chunks)

Example: HTTP response
!
Known marker (blank line)
signals end of headers
!
Size of payload indicated
in the headers

TCP Reliability

• TCP connections are reliable
• Application data gathered into packets

• Each packet has a sequence number and
an acknowledgement number
• Sequence number counts how many bytes are sent

(this example is unrealistic, since it shows one byte
being sent per packet)

• Acknowledgement number specifies next
byte expected to be received
• Cumulative positive acknowledgement

• Only acknowledge contiguous data packets (sliding
window protocol, so several data packets in flight)

• Duplicated acknowledgements imply loss

• TCP layer retransmits lost packets – this is
invisible to the application

Host A

Ti
m

e

Host B

Ti
m

e

x

seq = 5
seq = 6
seq = 7
seq = 8
seq = 9

seq = 10
seq = 11

ack = 6
ack = 7

ack = 8

ack = 8
ack = 8

ack = 8

22

TCP Reliability: How is Loss Detected

• Packet reordering also
causes duplicate ACKs
• Gives appearance of loss, when

the data was merely delayed

• TCP uses triple duplicate
ACK to indicate loss
• Four identical ACKs in a row

• Slightly delays response to loss,
but makes TCP more robust to
reordering

Host A

Ti
m

e

Host B

Ti
m

e

seq = 5
seq = 6
seq = 7
seq = 8
seq = 9

seq = 10
seq = 11

ack = 6
ack = 7
ack = 7

ack = 10
ack = 11
ack = 12

ack = 9

23

Head of Line Blocking in TCP

• Data delivered in order, even after loss occurs
• TCP will retransmit the missing data, transparently to the application

• A read() for the missing data will block until it arrives; TCP delivers all
data in-order

24

Sender Receiver
seq = 0
seq = 1500
seq = 3000
seq = 4500
seq = 6000

seq = 7500

ack = 1500
ack = 3000
ack = 4500

ack = 4500

ack = 4500
seq = 9000

1500 bytes
read() ! 1500 bytes
read() ! 1500 bytes
read() ! 1500 bytes

read() ! 6000 bytes

read() blocks

x

ack = 4500

ack = 10500
seq = 4500

seq = 10500

Summary

• The Berkeley Sockets API

• Implementing TCP client and server sockets

• The TCP API:
• Reliability

• Unframed byte stream

• Head of line blocking

25

