Network Layer (3): Intra-domain Routing

Networked Systems 3
Lecture 10

Lecture Outline

- Routing concepts
- Intra-domain unicast routing
- Distance vector protocols
- Link state protocols

Routing

- Network layer responsible for routing data from source to destination across multiple hops
- Nodes learn (a subset of) the network topology and run a routing algorithm to decide where to forward packets destined for other hosts
- End hosts usually have a simple view of the topology ("my local network" and "everything else") and a simple routing algorithm ("if it's not on my local network, send it to the default gateway")
- Gateway devices ("routers") exchange topology information, decide best route to destination based on knowledge of the entire network topology

Unicast Routing

- Routing algorithms to deliver packets from a source to a single destination
- Choice of algorithm affected by usage scenario
- Intra-domain routing
- Inter-domain routing
- Politics and economics

Routing in the Internet

Intra-domain Unicast Routing

Intra-domain Unicast Routing

- Routing within an AS
- Single trust domain
- No policy restrictions on who can determine network topology
- No policy restrictions on which links can be used
- Desire efficient routing \rightarrow shortest path
- Make best use of the network you have available
- Two approaches
- Distance vector - the Routing Information Protocol (RIP)
- Link state - Open Shortest Path First routing (OSPF)

Distance Vector Routing

- Each node maintains a vector containing the distance to every other node in the network
- Periodically exchanged with neighbours, so eventually each node knows the distance to all other nodes
- The routing table "converges" on a steady state
- Links which are down or unknown have distance $=\infty$
- Forward packets along route with least distance to destination

Distance Vector: Example

Distance Vector: Example

Time: 1
Nodes also know neighbours of their neighbours - routing data has spread one hop

Distance to Reach Node

$\begin{aligned} & \text { O} \\ & \frac{\mathrm{O}}{2} \\ & \stackrel{\rightharpoonup}{\sigma} \end{aligned}$		A	B	C	D	E	F	G
	A	0	1	1	2	1	1	2
	B	1	0	1	2	2	2	∞
	C	1	1	0	1	2	2	2
	D	2	2	1	0	∞	2	1
	E	1	2	2	∞	0	2	∞
	F	1	2	2	2	2	0	1
	G	2	∞	2	1	∞	1	0

Distance Vector: Example

Time: 2
 Routing data has spread two hops

Distance to Reach Node

$\begin{aligned} & \frac{0}{\mathrm{O}} \\ & \mathbf{Z} \end{aligned}$		A	B	C	D	E	F	G
	A	0	1	1	2	1	1	2
	B	1	0	1	2	2	2	3
\bigcirc	C	1	1	0	1	2	2	2
$\stackrel{\text { ¢ }}{0}$	D	2	2	1	0	3	2	1
	E	1	2	2	3	0	2	3
	F	1	2	2	2	2	0	1
	G	2	3	2	1	3	1	0

Distance Vector: Example

Routing table is complete -
nodes continue to exchange
distance metrics in case the nodes continue to exchange
distance metrics in case the topology changes

Routing Table at Node A

Destination	Cost	Next Hop
B	1	B
C	1	C
D	2	C
E	1	E
F	1	F
G	2	F

Distance Vector: Example

Distance Vector: Example

Distance Vector: Example

C knows it can reach F and G
Time: 6 in 2 hops via alternate paths, so advertises shorter routes; network begins to converge
Distance to Reach Node

		A	B	C	D	E	F	G
	A	0	1	1	2	1	1	3
	B	1	0	1	2	2	2	3
	C	1	1	0	1	2	2	2
	D	2	2	1	0	3	3	1
	E	1	2	2	3	0	2	∞
	F	1	2	2	2	2	0	∞
	G	2	3	2	1	3	∞	0

Distance Vector: Example

Time: 7
Eventually, the network is stable in a new topology
Distance to Reach Node

$\begin{aligned} & \text { O} \\ & \frac{1}{2} \end{aligned}$		A	B	C	D	E	F	G
	A	0	1	1	2	1	1	3
	B	1	0	1	2	2	2	3
\%	C	1	1	0	1	2	2	2
$\overline{\bar{o}}$	D	2	2	1	0	3	3	1
¢	E	1	2	2	3	0	2	4
$\stackrel{\rightharpoonup}{\infty}$	F	1	2	2	2	2	0	4
$\stackrel{\overline{\mathrm{O}}}{\underline{E}}$	G	2	3	2	1	3	4	0

Count to Infinity Problem

What if A-E link fails?

A advertises distance ∞ to E at the same time as C advertises a distance 2 to E (the old route via A).
B receives both, concludes that E can be reached in 3 hops via C, and advertises this to A. C sets its distance to E to ∞ and advertises this.
A receives the advertisement from B, decides it can reach E in 4 hops via B, and advertises this to C .

C receives the advertisement from A, decides it can reach E in 5 hops via A...

Loops, eventually counting up to infinity...

Solution 1: How big is infinity?

- Simple solution: \#define $\infty 16$
- Bounds time it takes to count to infinity, and hence duration of the disruption
- Provided the network is never more than 16 hops across!

Solution 2: Split Horizon

- When sending a routing update, do not send route learned from a neighbour back to that neighbour
- Prevents loops involved two nodes, doesn't prevent three node loops (like the previous example)
- No general solution exists - distance vector routing always suffers slow convergence due to the count to infinity problem

Link State Routing

- Nodes know the links to their neighbours, and the cost of using those links
- The link state information
- Reliably flood this information, giving all nodes complete map of the network
- Each node then directly calculates shortest path to every other node, uses this as routing table

Link State Information

- Link state information updates are flooded on startup, and when the topology changes
- Each update contains:
- Name of node that sent the update
- List of directly connected neighbours of that node, with the cost of the link to each
- A sequence number

Flooding Link State Updates

Node C sends an update to each of its neighbours

Each receiver compares the sequence number with that of the last update from C, if greater it forwards the update on all links except the link on which it was received.

Each receiver compares the sequence number with that of the last update from C , if greater it forwards the update on all links except the link on which it was received.

Eventually, the entire network has received the update

Calculate Shortest Paths

- Flooding link state data from all nodes ensures all nodes know the entire topology
- Each node uses Dijkstra's shortest-path algorithm to calculate optimal route to every other node
- Forward packets based on shortest path
- Recalculate shortest paths on every routing update

Shortest Path Algorithm

Definitions:

$N \quad$ set of all nodes in the graph
$I(i, j)$ weight of link from i to j (∞ if no link, 0 if $i=j$)
$s \quad$ source node from which we're calculating shortest paths
Dijkstra's Algorithm for an undirected connected graph:

```
M = {s}
The set of nodes that have been checked
foreach n in N - {s}:
    C(n)}=l(s,n
while (N\not=M):
    c}=
    foreach n in (N-M)
        if C(w) < c then w = n
    M += {w}
    Add one node at a time, starting with the closest
    foreach n in (N-M):
            if C(n)>C(w) + l(w, n) then C(n)=C(w) + l(w, n) Best route to n is via w
```

Result:
$C(x)$ cost of the shortest path from s to x

Distance Vector vs. Link State

- Distance vector routing:
- Simple to implement
- Doesn't require routers to store much information
- Suffers from slow convergence
- Link State routing:
- More complex
- Requires each router to store a complete network map
- Much faster convergence

Slow convergence times make distance vector routing unsuitable for large networks

