
Network Layer (3): Intra-domain
Routing

Networked Systems 3
Lecture 10

Lecture Outline

• Routing concepts

• Intra-domain unicast routing
• Distance vector protocols

• Link state protocols

2

Routing

• Network layer responsible for routing data from
source to destination across multiple hops
• Nodes learn (a subset of) the network topology and run a routing

algorithm to decide where to forward packets destined for other hosts

• End hosts usually have a simple view of the topology (“my local
network” and “everything else”) and a simple routing algorithm (“if it’s
not on my local network, send it to the default gateway”)

• Gateway devices (“routers”) exchange topology information, decide
best route to destination based on knowledge of the entire network
topology

3

Unicast Routing

• Routing algorithms to deliver packets from a source
to a single destination

• Choice of algorithm affected by usage scenario
• Intra-domain routing

• Inter-domain routing

• Politics and economics

4

Host Host Host

Ethernet

Local ISP

End Site

Tier-1 ISP

Routing in the Internet

Regional ISP

5

Intra-domain Unicast Routing

6

Intra-domain Unicast Routing

• Routing within an AS
• Single trust domain

• No policy restrictions on who can determine network topology

• No policy restrictions on which links can be used

• Desire efficient routing → shortest path

• Make best use of the network you have available

• Two approaches

• Distance vector – the Routing Information Protocol (RIP)

• Link state – Open Shortest Path First routing (OSPF)

7

Distance Vector Routing

• Each node maintains a vector containing the
distance to every other node in the network
• Periodically exchanged with neighbours, so eventually each node knows

the distance to all other nodes

• The routing table “converges” on a steady state

• Links which are down or unknown have distance = ∞

• Forward packets along route with least distance to
destination

8

Distance Vector: Example

A

B

C

D
E

F G

Destination Cost Next Hop
B 1 B
C 1 C
D ∞ -
E 1 E
F 1 F
G ∞ -

A B C D E F G
A 0 1 1 ∞ 1 1 ∞
B 1 0 1 ∞ ∞ ∞ ∞
C 1 1 0 1 ∞ ∞ ∞
D ∞ ∞ 1 0 ∞ ∞ 1
E 1 ∞ ∞ ∞ 0 ∞ ∞
F 1 ∞ ∞ ∞ ∞ 0 1
G ∞ ∞ ∞ 1 ∞ 1 0In

fo
rm

at
io

n
S

to
re

d
at

 N
od

e

Distance to Reach Node

R
ou

tin
g

Ta
bl

e
at

 N
od

e
A

Time: 0 Nodes only know their
immediate neighbours

9

Distance Vector: Example

A

B

C

D
E

F G

Destination Cost Next Hop
B 1 B
C 1 C
D 2 C
E 1 E
F 1 F
G 2 F

A B C D E F G
A 0 1 1 2 1 1 2
B 1 0 1 2 2 2 ∞
C 1 1 0 1 2 2 2
D 2 2 1 0 ∞ 2 1
E 1 2 2 ∞ 0 2 ∞
F 1 2 2 2 2 0 1
G 2 ∞ 2 1 ∞ 1 0In

fo
rm

at
io

n
S

to
re

d
at

 N
od

e

Distance to Reach Node

R
ou

tin
g

Ta
bl

e
at

 N
od

e
A

Time: 1
AC

AG

A

BCEF ABD

CG

DF

Nodes also know neighbours
of their neighbours – routing
data has spread one hop

10

Distance Vector: Example

A

B

C

D
E

F G

Destination Cost Next Hop
B 1 B
C 1 C
D 2 C
E 1 E
F 1 F
G 2 F

A B C D E F G
A 0 1 1 2 1 1 2
B 1 0 1 2 2 2 3
C 1 1 0 1 2 2 2
D 2 2 1 0 3 2 1
E 1 2 2 3 0 2 3
F 1 2 2 2 2 0 1
G 2 3 2 1 3 1 0In

fo
rm

at
io

n
S

to
re

d
at

 N
od

e

Distance to Reach Node

R
ou

tin
g

Ta
bl

e
at

 N
od

e
A

Time: 2
ACDEF

ABCDEG

ABCF

BCDEFG ABDEFG

ABCFG

ACDF

Routing data has spread
two hops

11

Distance Vector: Example

A

B

C

D
E

F G

Destination Cost Next Hop
B 1 B
C 1 C
D 2 C
E 1 E
F 1 F
G 2 F

A B C D E F G
A 0 1 1 2 1 1 2
B 1 0 1 2 2 2 3
C 1 1 0 1 2 2 2
D 2 2 1 0 3 2 1
E 1 2 2 3 0 2 3
F 1 2 2 2 2 0 1
G 2 3 2 1 3 1 0In

fo
rm

at
io

n
S

to
re

d
at

 N
od

e

Distance to Reach Node

R
ou

tin
g

Ta
bl

e
at

 N
od

e
A

Time: 3
ACDEF

ABCDEG

ABCDFG

BCDEFG ABDEFG

ABCEFG

ABCDEF

Routing table is complete –
nodes continue to exchange
distance metrics in case the
topology changes

12

Distance Vector: Example

A

B

C

D
E

F G

Destination Cost Next Hop
B 1 B
C 1 C
D 2 C
E 1 E
F 1 F
G 2 F

A B C D E F G
A 0 1 1 2 1 1 2
B 1 0 1 2 2 2 3
C 1 1 0 1 2 2 2
D 2 2 1 0 3 2 1
E 1 2 2 3 0 2 3
F 1 2 2 2 2 0 ∞
G 2 3 2 1 3 ∞ 0In

fo
rm

at
io

n
S

to
re

d
at

 N
od

e

Distance to Reach Node

R
ou

tin
g

Ta
bl

e
at

 N
od

e
A

Time: 4
Link between F and G fails
F and G notice, set the link
distance to ∞, and pass an
update to A and D

13

Distance Vector: Example

A

B

C

D
E

F G

Destination Cost Next Hop
B 1 B
C 1 C
D 2 C
E 1 E
F 1 F
G 2 F

A B C D E F G
A 0 1 1 2 1 1 ∞
B 1 0 1 2 2 2 3
C 1 1 0 1 2 2 2
D 2 2 1 0 3 ∞ 1
E 1 2 2 3 0 2 3
F 1 2 2 2 2 0 ∞
G 2 3 2 1 3 ∞ 0In

fo
rm

at
io

n
S

to
re

d
at

 N
od

e

Distance to Reach Node

R
ou

tin
g

Ta
bl

e
at

 N
od

e
A

Time: 5
A sets its distance to G to ∞
D sets its distance to F to ∞
Both pass on news of the
link failure

14

Distance Vector: Example

A

B

C

D
E

F G

Destination Cost Next Hop
B 1 B
C 1 C
D 2 C
E 1 E
F 1 F
G 2 F

A B C D E F G
A 0 1 1 2 1 1 3
B 1 0 1 2 2 2 3
C 1 1 0 1 2 2 2
D 2 2 1 0 3 3 1
E 1 2 2 3 0 2 ∞
F 1 2 2 2 2 0 ∞
G 2 3 2 1 3 ∞ 0In

fo
rm

at
io

n
S

to
re

d
at

 N
od

e

Distance to Reach Node

R
ou

tin
g

Ta
bl

e
at

 N
od

e
A

Time: 6
C knows it can reach F and G
in 2 hops via alternate paths,
so advertises shorter routes;
network begins to converge

15

Distance Vector: Example

A

B

C

D
E

F G

Destination Cost Next Hop
B 1 B
C 1 C
D 2 C
E 1 E
F 1 F
G 2 F

A B C D E F G
A 0 1 1 2 1 1 3
B 1 0 1 2 2 2 3
C 1 1 0 1 2 2 2
D 2 2 1 0 3 3 1
E 1 2 2 3 0 2 4
F 1 2 2 2 2 0 4
G 2 3 2 1 3 4 0In

fo
rm

at
io

n
S

to
re

d
at

 N
od

e

Distance to Reach Node

R
ou

tin
g

Ta
bl

e
at

 N
od

e
A

Time: 7 Eventually, the network is
stable in a new topology

16

Count to Infinity Problem

A

B

C

D
E

F G

Loops, eventually counting up to infinity...

What if A-E link fails?
A advertises distance ∞ to E at the same time
as C advertises a distance 2 to E (the old
route via A).
B receives both, concludes that E can be
reached in 3 hops via C, and advertises this
to A. C sets its distance to E to ∞ and
advertises this.
A receives the advertisement from B,
decides it can reach E in 4 hops via B, and
advertises this to C.

C receives the advertisement from A,
decides it can reach E in 5 hops via A…

17

• Simple solution: #define ∞ 16

• Bounds time it takes to count to infinity, and hence
duration of the disruption

• Provided the network is never more than 16 hops
across!

Solution 1: How big is infinity?

18

Solution 2: Split Horizon

• When sending a routing update, do not send route
learned from a neighbour back to that neighbour
• Prevents loops involved two nodes, doesn’t prevent three node loops (like

the previous example)

• No general solution exists – distance vector routing always suffers slow
convergence due to the count to infinity problem

19

Link State Routing

• Nodes know the links to their neighbours, and the
cost of using those links
• The link state information

• Reliably flood this information, giving all nodes
complete map of the network

• Each node then directly calculates shortest path to
every other node, uses this as routing table

20

Link State Information

• Link state information updates are flooded on start-
up, and when the topology changes

• Each update contains:
• Name of node that sent the update

• List of directly connected neighbours of that node, with the cost of the link
to each

• A sequence number

21

Flooding Link State Updates

A

B

C

D
E

F G

Node C sends an update to each of its
neighbours

Each receiver compares the sequence number
with that of the last update from C, if greater it
forwards the update on all links except the link
on which it was received.

Each receiver compares the sequence number
with that of the last update from C, if greater it
forwards the update on all links except the link
on which it was received.

Eventually, the entire network has received the
update

22

Calculate Shortest Paths

• Flooding link state data from all nodes ensures all
nodes know the entire topology

• Each node uses Dijkstra’s shortest-path algorithm
to calculate optimal route to every other node
• Forward packets based on shortest path

• Recalculate shortest paths on every routing update

23

Shortest Path Algorithm

Definitions:!
 N set of all nodes in the graph"
 l(i, j) weight of link from i to j (∞ if no link, 0 if i = j)"
 s source node from which we’re calculating shortest paths"
!
Dijkstra’s Algorithm for an undirected connected graph:!
 M = {s} The set of nodes that have been checked"
 foreach n in N - {s}: The distance to directly connected neighbouring nodes"
 C(n) = l(s, n)"
!
 while (N ≠ M):"
 c = ∞"
 foreach n in (N-M)"
 if C(w) < c then w = n Find node w such that C(w) is the minimum for all nodes in (N-M)"
!
 M += {w} Add one node at a time, starting with the closest"
 foreach n in (N-M):"
 if C(n) > C(w) + l(w, n) then C(n) = C(w) + l(w, n) Best route to n is via w"
!
Result:"
 C(x) cost of the shortest path from s to x

24

Distance Vector vs. Link State

• Distance vector routing:

• Simple to implement

• Doesn’t require routers to
store much information

• Suffers from slow
convergence
!

• Link State routing:

• More complex

• Requires each router to store
a complete network map

• Much faster convergence

Slow convergence times make distance vector
routing unsuitable for large networks

25

