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Lecture Outline

• Routing concepts 

• Intra-domain unicast routing 
• Distance vector protocols 

• Link state protocols
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Routing

• Network layer responsible for routing data from 
source to destination across multiple hops 
• Nodes learn (a subset of) the network topology and run a routing 

algorithm to decide where to forward packets destined for other hosts 

• End hosts usually have a simple view of the topology (“my local 
network” and “everything else”) and a simple routing algorithm (“if it’s 
not on my local network, send it to the default gateway”) 

• Gateway devices (“routers”) exchange topology information, decide 
best route to destination based on knowledge of the entire network 
topology
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Unicast Routing

• Routing algorithms to deliver packets from a source 
to a single destination 

• Choice of algorithm affected by usage scenario 
• Intra-domain routing 

• Inter-domain routing 

• Politics and economics
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Intra-domain Unicast Routing
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Intra-domain Unicast Routing

• Routing within an AS 
• Single trust domain  

• No policy restrictions on who can determine network topology 

• No policy restrictions on which links can be used 

• Desire efficient routing → shortest path 

• Make best use of the network you have available 

• Two approaches 

• Distance vector – the Routing Information Protocol (RIP) 

• Link state – Open Shortest Path First routing (OSPF)
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Distance Vector Routing

• Each node maintains a vector containing the 
distance to every other node in the network 
• Periodically exchanged with neighbours, so eventually each node knows 

the distance to all other nodes 

• The routing table “converges” on a steady state 

• Links which are down or unknown have distance = ∞ 

• Forward packets along route with least distance to 
destination
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Distance Vector: Example
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Time: 0 Nodes only know their 
immediate neighbours
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Distance Vector: Example
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E 1 E
F 1 F
G 2 F

A B C D E F G
A 0 1 1 2 1 1 2
B 1 0 1 2 2 2 ∞
C 1 1 0 1 2 2 2
D 2 2 1 0 ∞ 2 1
E 1 2 2 ∞ 0 2 ∞
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Nodes also know neighbours 
of their neighbours – routing 
data has spread one hop
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Distance Vector: Example
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Destination Cost Next Hop
B 1 B
C 1 C
D 2 C
E 1 E
F 1 F
G 2 F

A B C D E F G
A 0 1 1 2 1 1 2
B 1 0 1 2 2 2 3
C 1 1 0 1 2 2 2
D 2 2 1 0 3 2 1
E 1 2 2 3 0 2 3
F 1 2 2 2 2 0 1
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Routing data has spread 
two hops
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Distance Vector: Example
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Destination Cost Next Hop
B 1 B
C 1 C
D 2 C
E 1 E
F 1 F
G 2 F

A B C D E F G
A 0 1 1 2 1 1 2
B 1 0 1 2 2 2 3
C 1 1 0 1 2 2 2
D 2 2 1 0 3 2 1
E 1 2 2 3 0 2 3
F 1 2 2 2 2 0 1
G 2 3 2 1 3 1 0In
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Routing table is complete – 
nodes continue to exchange 
distance metrics in case the 
topology changes
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Distance Vector: Example
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Destination Cost Next Hop
B 1 B
C 1 C
D 2 C
E 1 E
F 1 F
G 2 F

A B C D E F G
A 0 1 1 2 1 1 2
B 1 0 1 2 2 2 3
C 1 1 0 1 2 2 2
D 2 2 1 0 3 2 1
E 1 2 2 3 0 2 3
F 1 2 2 2 2 0 ∞
G 2 3 2 1 3 ∞ 0In
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Time: 4
Link between F and G fails 
F and G notice, set the link 
distance to ∞, and pass an 
update to A and D
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Distance Vector: Example
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Destination Cost Next Hop
B 1 B
C 1 C
D 2 C
E 1 E
F 1 F
G 2 F

A B C D E F G
A 0 1 1 2 1 1 ∞
B 1 0 1 2 2 2 3
C 1 1 0 1 2 2 2
D 2 2 1 0 3 ∞ 1
E 1 2 2 3 0 2 3
F 1 2 2 2 2 0 ∞
G 2 3 2 1 3 ∞ 0In
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Time: 5
A sets its distance to G to ∞ 
D sets its distance to F to ∞ 
Both pass on news of the 
link failure
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Distance Vector: Example
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Destination Cost Next Hop
B 1 B
C 1 C
D 2 C
E 1 E
F 1 F
G 2 F

A B C D E F G
A 0 1 1 2 1 1 3
B 1 0 1 2 2 2 3
C 1 1 0 1 2 2 2
D 2 2 1 0 3 3 1
E 1 2 2 3 0 2 ∞
F 1 2 2 2 2 0 ∞
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Time: 6
C knows it can reach F and G 
in 2 hops via alternate paths, 
so advertises shorter routes; 
network begins to converge
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Distance Vector: Example
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Destination Cost Next Hop
B 1 B
C 1 C
D 2 C
E 1 E
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G 2 F

A B C D E F G
A 0 1 1 2 1 1 3
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Time: 7 Eventually, the network is 
stable in a new topology
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Count to Infinity Problem

A

B

C

D
E

F G

Loops, eventually counting up to infinity...

What if A-E link fails?
A advertises distance ∞ to E at the same time 
as C advertises a distance 2 to E (the old 
route via A).
B receives both, concludes that E can be 
reached in 3 hops via C, and advertises this 
to A. C sets its distance to E to ∞ and 
advertises this.
A receives the advertisement from B, 
decides it can reach E in 4 hops via B, and 
advertises this to C.

C receives the advertisement from A, 
decides it can reach E in 5 hops via A…
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• Simple solution:  #define ∞ 16 

• Bounds time it takes to count to infinity, and hence 
duration of the disruption 

• Provided the network is never more than 16 hops 
across!

Solution 1: How big is infinity?
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Solution 2: Split Horizon

• When sending a routing update, do not send route 
learned from a neighbour back to that neighbour 
• Prevents loops involved two nodes, doesn’t prevent three node loops (like 

the previous example) 

• No general solution exists – distance vector routing always suffers slow 
convergence due to the count to infinity problem
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Link State Routing

• Nodes know the links to their neighbours, and the 
cost of using those links  
• The link state information 

• Reliably flood this information, giving all nodes 
complete map of the network 

• Each node then directly calculates shortest path to 
every other node, uses this as routing table
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Link State Information

• Link state information updates are flooded on start-
up, and when the topology changes 

• Each update contains: 
• Name of node that sent the update 

• List of directly connected neighbours of that node, with the cost of the link 
to each 

• A sequence number
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Flooding Link State Updates

A

B

C

D
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F G

Node C sends an update to each of its 
neighbours

Each receiver compares the sequence number 
with that of the last update from C, if greater it 
forwards the update on all links except the link 
on which it was received.

Each receiver compares the sequence number 
with that of the last update from C, if greater it 
forwards the update on all links except the link 
on which it was received.

Eventually, the entire network has received the 
update
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Calculate Shortest Paths

• Flooding link state data from all nodes ensures all 
nodes know the entire topology 

• Each node uses Dijkstra’s shortest-path algorithm 
to calculate optimal route to every other node 
• Forward packets based on shortest path 

• Recalculate shortest paths on every routing update
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Shortest Path Algorithm

Definitions:!
  N       set of all nodes in the graph"
  l(i, j) weight of link from i to j (∞ if no link, 0 if i = j)"
  s       source node from which we’re calculating shortest paths"
!
Dijkstra’s Algorithm for an undirected connected graph:!
  M = {s}                           The set of nodes that have been checked"
  foreach n in N - {s}:             The distance to directly connected neighbouring nodes"
      C(n) = l(s, n)"
!
  while (N ≠ M):"
      c = ∞"
      foreach n in (N-M)"
          if C(w) < c then w = n    Find node w such that C(w) is the minimum for all nodes in (N-M)"
!
      M += {w}                      Add one node at a time, starting with the closest"
      foreach n in (N-M):"
          if C(n) > C(w) + l(w, n) then C(n) = C(w) + l(w, n)   Best route to n is via w"
!
Result:"
  C(x) cost of the shortest path from s to x
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Distance Vector vs. Link State

• Distance vector routing: 

• Simple to implement 

• Doesn’t require routers to 
store much information 

• Suffers from slow 
convergence 
!

• Link State routing: 

• More complex 

• Requires each router to store 
a complete network map 

• Much faster convergence

Slow convergence times make distance vector 
routing unsuitable for large networks
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