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The network layer is 
the first end-to-end 
layer in the OSI 
reference model

Role of the Network Layer

• Responsible for end-to-end delivery of data: 
• Across multiple link-layer hops and technologies 

• Across multiple autonomous systems 

• Building an Internet: a set of interconnected networks
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An internet comprises a set 
of interconnected networks

Interconnecting Networks

Host Host Host

Ethernet

Local ISP

Regional ISP

Tier-1 ISP

End Site

Each network administered separately – an 
autonomous system (AS) – making independent 
policy and technology choices
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Components of an Internet

• A common end-to-end network protocol 
• Provide a single seamless service to transport layer 

• Delivery of data packets/provisioning of circuits 

• Addressing of end systems 

• A set of gateway devices (a.k.a. routers) 
• Implement the common network protocol 

• Hide differences in link layer technologies 

• Framing, addressing, flow control, error detection and correction 

• Desire to perform the least amount of translation necessary
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The Internet

• The globally interconnected networks 
running the Internet Protocol (IP) 
• Initial design by Vint Cerf and Robert Kahn, 1974  

• IP provides an abstraction layer 
• Transport protocols and applications above 

• Assorted data link technologies and physical links below 

• A simple, best effort, connectionless, packet delivery 
service 

• Addressing, routing, fragmentation and reassembly
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History and Development

• 1965: Packet switching 
• Paul Baran (RAND), 

Donald Davies (NPL) 

• 1969: ARPA funding 
• First link: UCLA – SRI 

• 1973: First non-US sites 
• UCL, SICS 

• 1983: Switch to IPv4 

• 1990: World Wide Web 
• Tim Berners-Lee

ARPA network map 
December 1972
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Basic Concepts

• Global inter-networking protocol 

• Hour glass protocol stack 
• Single standard network layer protocol (IP) 

• Packet switched network,  best effort packet delivery 

• Uniform network and host addressing 

• Uniform end-to-end connectivity (subject to firewall 
policy) 

• Range of transport & application layer 
protocols 

• Range of link-layer technologies supported

IP

TCP
SMTP

HTTP RTP
SIP

HTMLMIME
SDP Codecs

Wi-Fi

Ethernet
ADSL

SONET

UDP

Wireless
Twisted Pair

Optical Fibre
Physical

Data Link

Network

Transport

Session

Application 
Presentation

7



IP Service Model

• Best effort, connectionless, packet delivery 
• Just send – no need to setup a connection first 

• Network makes its best effort to deliver packets, but provides no guarantees 

• Time taken to transit the network may vary 

• Packets may be lost, delayed, reordered, duplicated or corrupted 

• The network discards packets it can’t deliver 

• Easy to run over any type of link layer 

• Fundamental service: can easily simulate a circuit over packets, but 
simulating packets over a circuit difficult
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Best Effort Packet Delivery
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• Two versions of IP in use: 
• IPv4 – the current production Internet 

• IPv6 – the next generation Internet 

!

• IPv5 was assigned to the Internet Stream Protocol 

• An experimental multimedia streaming protocol developed between 
1979 and 1995 [http://www.ietf.org/rfc/rfc1819.txt], but no longer used

Internet Protocol
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IPv4 Packet Format
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Version = 4 Header Len DSCP ECN Total Length
Fragment Identifier DF MF Fragment Offset

TTL Upper Layer Protocol Header Checksum
Source Address

Destination Address

(Options – variable length, padded to 32 bit boundary)

Data – variable length
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IPv6 Packet Format
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Version = 6 DSCP ECN Flow Label
Payload Length Next Header Hop Limit

Source Address

Destination Address

(Optional Extension Headers – variable length)

Data – variable length
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Addressing

• Every network interface on every 
host is intended to have a unique 
address 
• Hosts may change address over time to 

give illusion of privacy 

• Addressable ≠ reachable: firewalls exist in 
both IPv4 and IPv6 

• IPv4 addresses are 32 bits 
• Example: 130.209.247.112 

• Significant problems due to lack of IPv4 
addresses → lecture 9 

• IPv6 addresses are 128 bits  
• Example: 2001:4860:4860::8844
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Version=4 Header 
Len

DSCP ECN Total Length

Fragment Identifier DF MF Fragment Offset

TTL Upper Layer Protocol Header Checksum

Source Address

Destination Address

(Options – variable length, padded to 32 bit boundary)

Data – variable length

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Version=6 DSCP ECN Flow Label

Payload Length Next Header Hop Limit

Source Address

Destination Address

(Optional Extension Headers – variable length)

Data – variable length



Fragmentation

• Link layer has a maximum packet 
size (MTU) 

• IPv4 will routers fragment packets 
that are larger than the MTU 
• MF bit is set if more fragments follow: 

reconstruct using fragment offset and 
fragment identifier 

!
!
!
!
!

• DF bit is set to indicate routers shouldn’t 
fragment, and must discard large packets 

• IPv6 doesn’t support fragmentation 
• Hard to implement for very high rate links 

• End-to-end principle
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Version=4 Header 
Len

DSCP ECN Total Length

Fragment Identifier DF MF Fragment Offset

TTL Upper Layer Protocol Header Checksum

Source Address

Destination Address

(Options – variable length, padded to 32 bit boundary)

Data – variable length

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Version=6 DSCP ECN Flow Label

Payload Length Next Header Hop Limit

Source Address

Destination Address

(Optional Extension Headers – variable length)

Data – variable length

Router

Length = 2000

Length = 1500, MF = 1, fragment offset = 0

Length = 500, MF = 0, fragment offset = 1500



Loop Protection

• Packets include a forwarding limit: 
• Set to a non-zero value when the packet 

is sent (typically 64 or 128) 

• Each router that forwards the packet 
reduces this value by 1 

• If zero is reached, packet is discarded 

• Stops packets circling forever if a 
network problem causes a loop 
• Assumption: network diameter is smaller 

than initial value of forwarding limit
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Version=4 Header 
Len

DSCP ECN Total Length

Fragment Identifier DF MF Fragment Offset

TTL Upper Layer Protocol Header Checksum

Source Address

Destination Address

(Options – variable length, padded to 32 bit boundary)

Data – variable length
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Version=6 DSCP ECN Flow Label

Payload Length Next Header Hop Limit

Source Address

Destination Address

(Optional Extension Headers – variable length)

Data – variable length



Differentiated Services

• End systems can request special 
service from the network 
• Telephony or gaming might prefer low 

latency over high bandwidth 

• Emergency traffic could be prioritised 

• Background software updates might ask 
for low priority 

• Signalled by “differentiated service 
code point” (DSCP) field in header 

• Provides a hint to the network, not 
a guarantee 
• Often stripped out at network boundaries 

• Difficult economic and network neutrality 
issues – who is allowed to set the DSCP 
and what are they charged for doing so? 

• IPv6 provides a flow label to group 
related traffic flows together
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Explicit Congestion Notification

• Routers typically respond to network 
congestion by dropping packets 
• A “best effort” packet delivery service 

• Transport protocols detect the loss, and can 
request a retransmission if necessary 

• Explicit congestion notification gives 
routers a way to signal congestion is 
approaching 
• If ECN=00 explicit congestion notification is 

disabled 

• If a sending host sets ECN=10 or ECN=01, 
routers monitor link usage, and can change 
the field to ECN=11 indicating congestion is 
imminent 

• A host receiving ECN=11 needs to reduce 
it’s sending rate – or the congested router 
will start dropping packets

17

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Version=4 Header 
Len

DSCP ECN Total Length

Fragment Identifier DF MF Fragment Offset

TTL Upper Layer Protocol Header Checksum

Source Address

Destination Address

(Options – variable length, padded to 32 bit boundary)

Data – variable length

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Version=6 DSCP ECN Flow Label

Payload Length Next Header Hop Limit

Source Address

Destination Address

(Optional Extension Headers – variable length)

Data – variable length



Header Checksum

• IPv4 header contain a checksum to 
detect transmission errors 
• Conceptually similar to link-layer checksum, 

although uses a different algorithm 

• Protects the IP header only, not the payload 
data protected (must be protected by upper 
layer protocol, if needed) 

• IPv6 does not contain a checksum – 
assumes the data is protected by a 
link layer checksum
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Transport Layer Protocol Identifier

• Network layer packet carry transport 
layer data as their payload 

• Necessary to identify what transport 
protocol is used, to pass the data to 
the correct upper-layer protocol 
• TCP = 6 

• UDP = 17 

• DCCP = 33 

• ICMP = 1 

• Legal values managed by the IANA 
• http://www.iana.org/assignments/protocol-

numbers/
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IPv4 or IPv6?

• IPv4 has reached end-of-life: insufficient addresses 

• IPv6 intended as long term replacement for IPv4 
• Primary goal: increase the size of the address space, to allow more hosts 

on the network 

• Also simplifies the protocol, makes high-speed implementations easier 

!

• Not yet clear if IPv6 will be widely deployed 
• But, straight-forward to build applications that work with both IPv4 and IPv6 

• DNS query using getaddrinfo() will return IPv6 address if it exists, else 
IPv4 address; all other socket calls use the returned value 

• Write new code to support both IPv6 and IPv4
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Summary

• Role of the network layer 

• From an internet to the Internet 

• Internet service model 

• IPv4 and IPv6
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