

Media Access Control

Networked Systems 3 Lecture 6

Lecture Outline

- Controlling access to the channel
- Link contention
- Media access control protocols
 - Contention-based protocols CSMA/CD
 - Token ring
 - Slotted TDMA

Controlling Access to the Channel

- Links may be point-to-point or multi-access
- How to arbitrate access to the link?
 - Point-to-point links typically two unidirectional links
 - Separate physical cables for each direction
 - Need framing in each direction, but there is no contention for the link
 - ARQ with stop-and-wait or sliding-window for flow control
 - Multi-access links typically share a bidirectional link
 - A single physical cable nodes contend for access to the link
 - A single radio frequency

Link Contention

- A collision occurs if two hosts transmit simultaneously
- Signals overlap: only garbage received

Media Access Control (MAC) Protocols

- Manage/avoid collisions with media access control protocol
 - Contention based (ALOHA, CSMA/CD, etc.)
 - Token based (Token ring)
 - Slotted (TDMA)
- Different degrees of fairness, access policies, etc.

Contention-based MAC

- Multiple hosts share channel in a way that can lead to collisions: system is contention-based
- Two-stage access to channel:
 - Detect that a collision is occurring/will occur
 - By listening to the channel while/before sending
 - Send if no collision, or back-off and/or retransmit data according to some algorithm to avoid/resolve collision
 - Back-off delay randomised and increasing to prevent repeated collisions
 - Can be arranged to give priority to certain hosts/users/traffic classes
- Probabilistic, variable latency, access to channel

The ALOHA Network

- Wireless network developed at the University of Hawaii (1970)
 - The first wireless packet switched network
- Simplest contention-based MAC
 - Try to transmit whenever data is available
 - If a collision occurs, wait random amount of time then retransmit; repeat until successful
- Simple, but poor performance
 - Low channel utilisation; long delays

Carrier Sense Multiple Access

- When propagation delay low, listen before sending
 - If another transmission is active: back-off as if collision occurred, without sending anything
 - If link is idle, send data immediately
- Improves utilisation
 - Active transmissions not disrupted by collisions
 - Only the new sender backs-off if the channel is active

B listens, hears no traffic (message from A hasn't reached it yet)

B starts transmitting

Collision occurs, as messages overlap in transit; smaller propagation delay → less likely to occur

CSMA/CD

- High propagation delay → increased collision rate
- CSMA updated with collision detection (CSMA/CD)
 - Listen to channel before, and while, transmitting data
 - If collision occurs, immediately stop sending, back-off, and retransmit
 - Collision still corrupts both packets
 - But, time channel is blocked due to collisions is reduced better performance than plain CSMA

Examples: Ethernet, 802.11 Wi-Fi

CSMA/CD: How to Back-Off?

- CSMA/CD uses back-off to avoid/resolve collisions
- How long is the back-off interval?
 - Should be random to avoid deterministic repeated collisions
 - Should increase with the number of collisions that affect a transmission repeated collisions signal congestion; reduce transmission rate allows the network to recover
 - Good strategy:
 - Initial back-off interval x seconds ± 50%
 - Each repeated collision before success, $x \rightarrow 2x$

Token-based MAC

 Repeated collisions can cause arbitrarily long delays and unpredictable variation in throughput

- Hosts circulate a token on the ring when they have no data to send
- Host wanting to send waits for, and removes, the token, sends one packet, then restarts the token circulating
- Token circulation enforces round robin transmission, bounds maximum wait time before host can transmit
 - Enforces fairness between hosts on the ring, but reduces utilisation
- Example: IBM Token Ring

Slotted MAC

- Split channel access into transmission slots
 - Time division media access (TDMA) control when hosts can transmit data
 - Frequency slots control which frequency bands hosts use to transmit data
- Controller assigns each host a transmission slot
 - Gives a limited, but guaranteed, capacity per-sender
 - Bounds delay variation due to channel access
 - Provides fairness guarantee

Example: GSM mobile phones

124 frequency bands, each 200 kHz wide 8 slots TDM within each frequency band

Design Trade-Off

- Which is best contention, token, or slotted MAC?
 - As usual, it depends on the application
 - Contention protocols cheaper, hardware more readily available, but cannot guarantee real-time performance
 - Token-based or slotted protocols offer stricter performance guarantees, but are more expensive and need less widely available hardware

Summary

- Media access control protocols
 - Contention-based protocols CSMA/CD
 - Token ring
 - Slotted TDMA

Fairness, throughput, and latency variation