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Lecture Outline

• Information content of signals 
• Time and frequency domain views of a signal 

• Fourier transform 

• Signal bandwidth as a proxy for information content 

• Capacity of a channel 
• Perfect, noise free, channel 

• Channel subject to Gaussian noise 

• Physical limits of communication

2



Information Theory

• Recall: communication happens when a signal is 
conveyed between source and destination via a 
channel 
• The channel has limited capacity 

• The amount of information in the signal determines if it will fit the channel 

• How to determine the amount of information in a signal, and the capacity 
of a channel?
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How are Signals Conveyed?

• Sender varies a physical property of the channel 
over time; receiver measures that property: 
• Voltage or current in an electrical cable 

• Modulation of a radio carrier 

• Model as a mathematical function, g(t)

t

g(t) Time domain view
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Information Content of a Signal

• More complex signals can convey more information 

!

!

!

!

!

• Signal bandwidth acts as a proxy for information content 

• More correctly: more complex signals convey more data; whether that data 
conveys more information depends on the efficiency of the encoding 

• There are various ways of encoding information for transmission, with more 
or less efficiency
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Time and Frequency Domains
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Fourier Transform



Fourier Analysis

• Mathematical method to derive frequency 
domain representation of a signal 
• Any well behaved periodic function can be constructed by 

summing a series of sines and cosines waves of varying 
frequency and amplitude 

!

!

!

• Difference between the highest and lowest frequencies is the 
signal bandwidth
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Addition of Sine Waves

• More harmonics → more accuracy 
• Example is building a simple square wave, but any well-behaved function 

can be modelled
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Addition of Sine Waves

• More harmonics → more accuracy 
• Example is building a simple square wave, but any well-behaved function 

can be modelled
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Addition of Sine Waves

• More harmonics → more accuracy 
• Example is building a simple square wave, but any well-behaved function 

can be modelled
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Addition of Sine Waves

• More harmonics → more accuracy 
• Example is building a simple square wave, but any well-behaved function 

can be modelled

-1

-0.5

 0

 0.5

 1

 0  1  2  3  4  5  6

sin(x)

-1

-0.5

 0

 0.5

 1

 0  1  2  3  4  5  6

sin(x)
1/3 sin(3x)

-1

-0.5

 0

 0.5

 1

 0  1  2  3  4  5  6

1st + 3rd harmonics

-1

-0.5

 0

 0.5

 1

 0  1  2  3  4  5  6

sin(x)
1/3 sin(3x)
1/5 sin(5x)

-1

-0.5

 0

 0.5

 1

 0  1  2  3  4  5  6

1st + 3rd + 5th harmonics

-1

-0.5

 0

 0.5

 1

 0  1  2  3  4  5  6

sin(x)
1/3 sin(3x)
1/5 sin(5x)
1/7 sin(7x)

-1

-0.5

 0

 0.5

 1

 0  1  2  3  4  5  6

1st + 3rd + 5th + 7th harmonics

8



Addition of Sine Waves

• More harmonics → more accuracy 
• Example is building a simple square wave, but any well-behaved function 

can be modelled
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Information Content

• Frequency domain view lets us visualise information 
content of a signal 
• More information → high frequency components 

• Limiting frequency range distorts signal – alternatively – signal content 
defines needed frequency range
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Channel Bandwidth Limits

• Real channels cannot pass arbitrary frequencies 
• Fundamental limitations based on physical properties of the channel, 

design of the end points, etc. 

• The channel bandwidth, H, measures the frequency range (Hz) it can 
transport 

!

• Implication: a channel can only convey a limited 
amount of information per unit time 
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Capacity of a Perfect Channel

• A channel’s bandwidth determines the 
frequency range it can transport 

• What about digital signals? 
• Sampling theorem: to accurately digitise an analogue 

signal, need 2H samples per second 

• Maximum transmission rate of a digital signal depends 
on channel bandwidth: Rmax = 2H log2 V  
• Rmax = maximum transmission rate of channel (bits per second)  

• H = bandwidth 

• V = number of discrete values per symbol 

• Assumption: noise-free channel

Harry Nyquist, 1889-1976
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Noise

• Real world channels are subject to noise 

• Many causes of noise: 
• Electrical interference 

• Cosmic radiation 

• Thermal noise 

• Corrupts the signal: additive interference

Different noise spectra
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Signal to Noise Ratio

• Can measure signal power, S, 
and noise floor, N, in a channel 

!

• Gives signal-to-noise ratio: S/N 
• Typically quoted in decibels (dB), not directly 

• Signal-to-noise ratio in dB = 10 log10 S/N 

!

• Example: ADSL modems report S/N ~30 for 
good quality phone lines: signal power 1000x 
greater than noise
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Capacity of a Noisy Channel

• Capacity of noisy channel depends 
on type of noise 

• Uniform or bursty; affecting all or some frequencies 

!

• Simplest to model is Gaussian noise: uniform noise 
that impacts all frequencies equally 

• Maximum transmission rate of a channel subject to 
Gaussian noise: Rmax = H log2(1 + S/N) Claude Shannon, 1916-2001
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Capacity of a Noisy Channel
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Implications

• Physical characteristics of channel limit amount of 
information that can be transferred 
• Bandwidth 

• Signal to noise ratio 

• These are fundamental limits: might be reached 
with careful engineering, but cannot be exceeded
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Summary

• More complex signals require more bandwidth 

• Channels have limited bandwidth 

• Physical limits on channel capacity due to noise 
imply physical limits on communication speed

Source: http://xkcd.com/26/
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