

Communications Theory

Networked Systems 3 Lecture 3

Lecture Outline

- Information content of signals
 - Time and frequency domain views of a signal
 - Fourier transform
 - Signal bandwidth as a proxy for information content
- Capacity of a channel
 - Perfect, noise free, channel
 - Channel subject to Gaussian noise
- Physical limits of communication

Information Theory

- Recall: communication happens when a signal is conveyed between source and destination via a channel
 - The channel has limited capacity
 - The amount of *information* in the signal determines if it will fit the channel
 - How to determine the amount of information in a signal, and the capacity of a channel?

How are Signals Conveyed?

- Sender varies a physical property of the channel over time; receiver measures that property:
 - Voltage or current in an electrical cable
 - Modulation of a radio carrier
- Model as a mathematical function, g(t)

Time domain view

Information Content of a Signal

More complex signals can convey more information

- Signal bandwidth acts as a proxy for information content
- More correctly: more complex signals convey more data; whether that data conveys more information depends on the efficiency of the encoding
- There are various ways of encoding information for transmission, with more or less efficiency

Time and Frequency Domains

More complex signals have a larger high frequency component: greater bandwidth

Fourier Analysis

- Mathematical method to derive frequency domain representation of a signal
 - Any well behaved periodic function can be constructed by summing a series of sines and cosines waves of varying frequency and amplitude

Joseph Fourier

- More harmonics → more accuracy
 - Example is building a simple square wave, but any well-behaved function can be modelled

- More harmonics → more accuracy
 - Example is building a simple square wave, but any well-behaved function can be modelled

- More harmonics → more accuracy
 - Example is building a simple square wave, but any well-behaved function can be modelled

- More harmonics → more accuracy
 - Example is building a simple square wave, but any well-behaved function can be modelled

- More harmonics → more accuracy
 - Example is building a simple square wave, but any well-behaved function can be modelled

Information Content

- Frequency domain view lets us visualise information content of a signal
 - More information → high frequency components
 - Limiting frequency range distorts signal alternatively signal content defines needed frequency range

Channel Bandwidth Limits

- Real channels cannot pass arbitrary frequencies
 - Fundamental limitations based on physical properties of the channel, design of the end points, etc.
 - The *channel bandwidth, H,* measures the frequency range (Hz) it can transport
- Implication: a channel can only convey a limited amount of information per unit time

Capacity of a Perfect Channel

- A channel's bandwidth determines the frequency range it can transport
- What about digital signals?
 - Sampling theorem: to accurately digitise an analogue signal, need 2H samples per second
 - Maximum transmission rate of a digital signal depends on channel bandwidth: R_{max} = 2H log₂ V
 - R_{max} = maximum transmission rate of channel (bits per second)
 - H = bandwidth
 - V = number of discrete values per symbol
 - Assumption: noise-free channel

Harry Nyquist, 1889-1976

Noise

- Real world channels are subject to noise
- Many causes of noise:
 - Electrical interference
 - Cosmic radiation
 Different noise spectra
 - Thermal noise
- Corrupts the signal: additive interference

Signal to Noise Ratio

 Can measure signal power, S, and noise floor, N, in a channel

- Gives signal-to-noise ratio: S/N
 - Typically quoted in decibels (dB), not directly
 - Signal-to-noise ratio in dB = 10 log₁₀ S/N
 - Example: ADSL modems report S/N ~30 for good quality phone lines: signal power 1000x greater than noise

S/N	dB
2	3
10	10
100	20
1000	30

Capacity of a Noisy Channel

- Capacity of noisy channel depends on type of noise
 - Uniform or bursty; affecting all or some frequencies
 - Simplest to model is Gaussian noise: uniform noise that impacts all frequencies equally
 - Maximum transmission rate of a channel subject to Gaussian noise: R_{max} = H log₂(1 + S/N)

Claude Shannon, 1916-2001

Capacity of a Noisy Channel

Implications

- Physical characteristics of channel limit amount of information that can be transferred
 - Bandwidth
 - Signal to noise ratio
- These are fundamental limits: might be reached with careful engineering, but cannot be exceeded

Summary

- More complex signals require more bandwidth
- Channels have limited bandwidth
- Physical limits on channel capacity due to noise imply physical limits on communication speed

