Introduction to Networked Systems

Networked Systems 3
Lecture 1

Lecture Outline

- Course Administration
- Aims, Objectives, Intended Learning Outcomes
- Course Outline
- Labs and Assessment
- Reading List
- Introduction to Networks

Course Administration

Contact Details and Website

- Lecturers
- Dr Colin Perkins (Glasgow) and Dr lan Thng (Singapore)
- No scheduled office hours - make appointments by email to discuss the course outside scheduled lecture or lab times if necessary
- Lecture notes and other material on online:
- http://csperkins.org/teaching/ns3/ (or on the School's Moodle site)
- Paper handouts will not be provided - the act of taking notes helps learning

Aims and Objectives

- To introduce the fundamental concepts and theory of communications
- To provide a solid understanding of the technology that supports modern networked computer systems
- To introduce low-level network programming
- To give students the ability to evaluate and advise industry on the use and deployment of networked systems

Intended Learning Outcomes

- By the end of the course, students should be able to:
- Describe and compare capabilities of various communication technologies and techniques;
- Know the differences between networks of different scale, and how these affect their design;
- Describe the issues in connecting heterogeneous networks;
- Describe importance of layering, and the OSI reference model;
- Understand demands of different applications on quality of service requirements for the underlying communication network;
- Demonstrate an understanding of the design and operation of an IP network, such as the Internet, and explain the purpose and function of its various components; and
- Write simple communication software

Course Outline

Week	Lecture Slot 1	Lecture Slot 2	Laboratory Session
1	Introduction to Network Systems	Protocols and Layers	Introduction to Network Programming in C
2	Communications Theory	Physical Layer	
3	The Data Link Layer	Media Access Control	Assessed Exercise: Web Server
4	Bridging	Internetworking	
5	Addressing	Intra-domain Routing	
6	Inter-domain Routing	The Transport Layer	
7	TCP	UDP and NAT	
8	Congestion Control	Session Layer and DNS	
9			
10	Presentation \& Application Layers	Security	

Lectures teach the theory of how the network operates
Laboratory sessions give practice developing networked applications in C

Assessment

- Assessed exercise: 20\%
- One formative exercise (weeks 1-2): introduction to network programming
- One summative exercise (weeks 3-8): implement a basic web server
- The summative exercise is an intentionally unstructured, and designed to test you program design skills, in addition to implementation ability.
- Do not leave the summative exercise until the last minute: it's designed to be completed over the course of several weeks, and there is intentionally too much to complete in a hurry over a couple of days.
- Examination: 80\%
- Exam format: answer all three questions

Required Reading

- Any good text on computer networks, for example:
- Peterson and Davie, Computer Networks: A Systems Approach, 5th Edition, Morgan Kaufman, 2011, ISBN 0123851386
- Kurose and Ross, Computer Networking: A Top-Down Approach, 6th Edition, Addison-Wesley, 2012, ISBN 0273768964
- Tanenbaum and Wetherall, Computer Networks, 5th Edition, Prentice Hall, 2010, ISBN 0132553171
- You are expected to read-along with the lectures the lectures introduce the concepts, and the books provide detail

Introduction to Networked Systems

Networked Systems

- Autonomous computing devices which exchange data to perform some application goal

- The exchange of data is explicitly visible to the application - the system is aware of the network
- Applications using the Internet is one example, but other networks in widespread use:
- Digital broadcast TV (e.g., FreeView in the UK)
- Mobile voice telephony
- Controller area networks connecting sensors and other components within vehicles or aircraft
- Sensor networks
- ...

Networked Systems

Communication

- how is information exchanged across a single link?

Communication

- Messages transferred from source to destination(s) via some communications channel
- Size of messages might be bounded
- Communication might be simplex, half- or full-duplex

Information

- Messages convey information
- The amount of information in a message can be characterised mathematically - Information Theory
- Capacity of channels to convey information can also be modelled
- How much? How fast? How much power used?
- Physical limits exist on the capacity of a channel

Signals

- Physical form of a message is a signal
- May be a material object (carrier pigeon, CD, ...)
- Usually a wave (sound, electrical signal, light, radio, ...)
- Signal may be analogue or digital
- Analogue: a smooth continuum of values
- Digital: a sequence of discrete symbols
- Mapping information to symbols is known as coding

Analogue Signals

- Simplest analogue signal: amplitude directly codes value of interest
- AM Radio, analogue telephones
- Can be arbitrarily accurate

- Susceptible to noise and interference on channel
- Difficult to process with digital electronics

Analogue Signals

Any analogue signal can be represented digitally: sample the 0101 signal at a suitable rate, quantise to nearest allowable discrete 0111 value, and convert to digital representation 1001
$\begin{array}{ll}\text { - The sampling theorem determines the rate at which the signal } & 1001 \\ \text { must be sampled for accurate reconstruction }(\rightarrow \text { lecture } 3) & 1000\end{array}$

Digital Signals

- Digital signals comprise a sequence of discrete symbols - fixed alphabet, not arbitrary values
- But underlying channel is almost always analogue
- Modulation used to map a digital signal onto the channel (\rightarrow lecture 4)
- Example: non-return to zero modulation:

Digital Signals: Baud Rate

- Computing systems use binary encoding
- The digital signal comprises two symbols: 0 and 1
- Networked systems often use non-binary encoding
- Example: wireless links frequently use quadrate amplitude modulation with either 16, 64, or 256 possible symbols (\rightarrow lecture 4)
- Number of symbols transmitted per second is the baud rate

Channels and Network Links

- A signal is conveyed via a channel
- May be directly conveyed - electrical signals in a cable
- May be modulated onto an underlying carrier - radio
- The combination of signal and channel forms a link

From Links to Networks

- A link directly connects one or more hosts

- A network comprises several links connected together
- The devices connecting the links are called either switches or routers depending on the type of network

Circuit Switched Networks

- A dedicated circuit can be set up for A and B to communicate
- A and B exchange arbitrary length messages
- Guaranteed capacity once circuit is created
- But - the dedicated circuit can block other communications (e.g. the C to D path); the capacity of the network gives the blocking probability
- Example: traditional telephone network

Packet Switched Networks

- Alternatively, messages can be split into small packets before transmission
- Allows A-B and C-D to communicate at the same time, sharing the bottleneck link
- Connectivity guaranteed, but the available capacity varies depending how many other people are using the network
- Packets are small, and have a size constraint; a message can consist of many packets
- Example: the Internet

Networked Systems

- All networked systems built using these basic components:
- Hosts - the source and destination(s)
- Links - physical realisation of the channel, conveying messages
- Switches/routers - connect multiple links
- Layered on top are network protocols which give meaning to the messages that are exchanged

Summary

- Communication \rightarrow networking \rightarrow networked systems

