
Assessed%Coursework%

Course%Name% Networked%Systems%3%(NS3)%

Coursework%Number% Summative%Exercise%1%

Deadline% Time:% 4:30pm% Date:% 6%March%2015%

%%Contribution%to%final%

course%mark%

20% This%should%take%this%

many%hours:%

20%

Solo%or%Group%%! %%%Solo% ! % Group% %

%

Submission%Instructions%

%

Submit%via%Moodle,%following%instructions%in%the%

attached%handOout.%

%

Who%Will%Mark%This?%! % Lecturer%%%%! % Tutor% Other%

Feedback%Type?%! % Written%%%%%! % Oral% Both%

Individual%or%Generic?%! % Generic% Individual%%%! % Both%

Other%Feedback%Notes%% %

Discussion%in%Class?%! % Yes% No%%%%%! % %

Please%Note:%This%Coursework%cannot%be%ReODone%

!

Code%of%Assessment%Rules%for%Coursework%Submission%

Deadlines!for!the!submission!of!coursework!which!is!to!be!formally!assessed!will!be!published!in!course!documentation,!and!work!which!is!submitted!later!than!
the!deadline!will!be!subject!to!penalty!as!set!out!below.!The!primary!grade!and!secondary!band!awarded!for!coursework!which!is!submitted!after!the!published!
deadline!will!be!calculated!as!follows:!

(i) in!respect!of!work!submitted!not!more!than!five!working!days!after!the!deadline!
a. the!work!will!be!assessed!in!the!usual!way;!
b. the!primary!grade!and!secondary!band!so!determined!will!then!be!reduced!by!two!secondary!bands!for!each!working!day!(or!part!of!a!

working!day)!the!work!was!submitted!late.!
(ii) work!submitted!more!than!five!working!days!after!the!deadline!will!be!awarded!Grade!H.!

Penalties!for!late!submission!of!coursework!will!not!be!imposed!if!good!cause!is!established!for!the!late!submission.!You!should!submit!documents!supporting!
good!cause!via!MyCampus.!!

Penalty%for%nonOadherence%to%Submission%Instructions%is%2%bands%

You%must%complete%an%“Own%Work”%form%via%%

http://www.dcs.gla.ac.uk/socsOonline%for%all%coursework%

UNLESS%submitted%via%Moodle%

%

Marking%Criteria%

%

The%marking%scheme%is%attached,%and%is%available%on%the%Moodle%page%for%Networked%

Systems%3.%

%

%

NS3 Lab 2 – Web Server

Dr Colin Perkins
School of Computing Science

University of Glasgow
http://csperkins.org/teaching/ns3/

27/28 January 2015

Introduction

The laboratory exercises for Networked Systems 3 (NS3) will introduce you to network programming in
C on Unix/Linux systems, and help you understand how to use the network. There are weekly laboratory
sessions for this course, during which you will complete several exercises. These exercises will build on
your knowledge of C programming from the Advanced Programming 3 (AP3) course last semester, and
introduce you to network programming in C. There are a mixture of formative and summative exercises.
The formative exercises are intended to give you practice in programming networked systems in C; they
are not assessed. The summative exercise tests your ability to use the network by developing a networked
system. They are designed to complement the lectures, which explain how the network operates.

This is NS3 lab 2, a summative exercise to build a web server in C. It should be completed during the
timetabled laboratory sessions in weeks 3–8 of the semester, and during other hours as necessary. This
exercise is expected to take around 20 hours to complete, and is assessed worth 20% of the marks for this
course.

The first version of your server will support only the minimum parts of HTTP required to send a single
response to the client; as you proceed further through the exercise you will add more HTTP features, and
add support for multiple requests and multiple simultaneous clients. You should attempt all parts of this
exercise. This exercise is intentionally broad in scope, and relatively unstructured. It is designed to test
your program design skills, as well as your ability to implement a solution to a problem. You should
proceed at your own pace, making use of the laboratory demonstrators for assistance as needed.

It is strongly recommended that you read this entire handout carefully, and think carefully about, and
plan, your system design, before you start coding. Do not leave this exercise until the last minute. It

is designed to be completed over the course of several weeks, giving you time to reflect on your design.

There is too much here to successfully complete in a hurry over a couple of days.

The HyperText Transport Protocol

A web browser uses the HyperText Transport Protocol (HTTP) to retrieve pages from a web server. The
browser makes a TCP/IP connection to the web server, sends an HTTP request for the requested web
page over that connection, reads the response back, and then displays the page. Both HTTP requests and
responses are text-based, making the network protocol relatively straight-forward to understand.

An HTTP request comprises a single line command (the “method”), followed by one or more
header lines containing additional information. To retrieve a page, a web browser uses the GET method,
specifying the page to retrieve and the version of the HTTP protocol used (the current version is
HTTP/1.1). For example, a browser would send the method GET /index.html HTTP/1.1 to

1

http://csperkins.org/teaching/ns3/

retrieve the page /index.html from a server. The GET request must be followed by a header to
specify the name of the web site, for example Host: www.gla.ac.uk (in case there are several sites
hosted on the same server). The headers are followed with a blank line, to indicate the end of the request.
For example, to fetch the main University web page (http://www.gla.ac.uk/index.html), a
browser could make a TCP/IP connection to www.gla.ac.uk port 80, and send the following request:

GET /index.html HTTP/1.1
Host: www.gla.ac.uk

Note that each line ends with a carriage return (‘\r’) followed by a new line (‘\n’), and the whole
request is terminated by a blank line (i.e., a line containing nothing but the \r\n end of line marker). The
example above is a minimal HTTP request. A web browser will usually include many other header lines,
in addition to the Host: header, to control the connection, indicate support for particular file formats
and languages, convey cookies, and so on.

When it receives an HTTP GET request for a web page that exists, a web server will reply
with a HTTP/1.1 200 OK response, followed by several more header lines providing information
about the response, a blank line, and then the body of the page. The headers lines should include a
Content-Length: header, which specifies the size of the body of the page in bytes. As with the
request, each header line ends with a carriage return followed by a new line, and the headers are separated
from the body with a blank line. An example of the type of response that is sent follows (“...” indicates
that some text has been elided):

HTTP/1.1 200 OK
Date: Tue, 12 Jan 2010 11:18:30 GMT
Server: Apache/1.3.34 (Unix) PHP/4.4.2
Last-Modified: Tue, 12 Jan 2010 09:59:31 GMT
Content-Length: 15694
Content-Type: text/html

<html>
<head>

...
</body>

</html>

In this example, the “Content-Length:” is 15694 bytes, meaning that there are exactly 15694 bytes in
the body of the response (starting with the “<” of the “<hmtl>” line, and finishing with the “>” of the
“</html>” line.

If a request is made for a non-existing file, the server will respond with a 404 “file not found” error.
This will have a “Content-Type:” header of “text/html”, and the body of the response contains the error
page to be displayed to the user.

HTTP/1.1 404 Not Found
Date: Tue, 20 Jan 2009 10:31:56 GMT
Server: Apache/2.0.46 (Scientific Linux)
Content-Length: 300
Connection: close
Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html>
<head>
<title>404 Not Found</title>
...
</body>
</html>

Other types of response are possible, distinguished by the numeric code in the first line of the response.

2

Summative Exercise: A Simple Web Server

The aim this exercise is to write a simple web server. The web server should bind to port 8080 (access to
port 80 is restricted to software installed by the systems administrator, so we’ll use port 8080 for this
exercise), listen for HTTP requests sent by a web browser, and return appropriate responses to the client
(either the web page requested, or an error message).

Basic Connection Handling

Your server should create a TCP socket, bind it to port 8080, then listen for and accept connections from
browsers. On accepting a connection from the browser, your server should read and parse the request
(when debugging, you may want to print out the request, to see what the browser is sending).

The first line of the data read from the socket (up to the initial \r\n) determines the type of HTTP
request being made by the browser. If the request begins GET followed by a filename and HTTP/1.1
then you should parse that request to retrieve the name of the file requested. The filename should be
interpreted as being relative to the directory in which your server was started (i.e., if the server was run
from directory /users/staff/csp and received the request GET /index.html HTTP/1.1, it
would return the contents of /users/staff/csp/index.html).

Your server should also check the value of the Host: HTTP header sent by the client, to ensure
it matches the current hostname (use the gethostname() function to find the hostname; be sure to
check both hostname and hostname.dcs.gla.ac.uk – or the equivalent domain name in Singapore). Note
that different browsers can send HTTP header lines in different orders; your code must not assume that
the Host: header is in a fixed location.

After parsing the request to determine the filename, and checking the Host: header, your server
should respond with the appropriate HTTP headers, followed by the data (the contents of the file). It
should then close the connection. If the hostname matches, and the requested file exists, a success (“200
OK”) response should be sent, followed by the contents of the requested file, then the connection should
be closed. An example of a minimal successful response, returning an HTML page, is as follows:

HTTP/1.1 200 OK
Content-Type: text/html
Connection: close

<html>
<head>
...

(the “...” indicates that the output has been truncated in these notes – your server should return a complete
web page). The HTTP header lines and the blank file following them must be generated by the server for
each page: only the HTML page content is read from the file.

If the requested file doesn’t exist, a “404 File Not Found” response should be generated. An example
“404 File Not Found” response is as follows (the headers indicate that an error has occurred, body of the
response is displayed by the browser).

HTTP/1.1 404 Not Found
Content-Type: text/html
Connection: close

<html>
<head>
<title> 404 Not Found </title>

3

</head>
<body>
<p> The requested file cannot be found. </p>
</body>
</html>

If the hostname of the server doesn’t match the Host: header, if the Host: header is not present,
if the request does not start with GET, or if your server doesn’t understand the request for some other
reason, you should send a “400 Bad Request” response. If your server fails for some other reason, it
should send a “500 Internal Server Error” response. Note that the HTTP standard requires the method
(“GET”) to be in upper case, but the other header lines are case insensitive.

The first line of the response indicates the version of HTTP used (HTTP/1.1) and if the request
succeeded (200 OK) or failed (e.g., 404 Not Found). This is followed by several header lines giving
information about the response, a blank line, and the actual data requested. Two headers are essential:
Content-Type: tells the browser the format of the data – the first version of your server should
use text/html for everything – and Connection: close tells the client that you will close the
connection after sending the data.

Write a simple index.html file, and test your server by retrieving this file using a web browser of
your choice. The URL you need to give to your browser will depend on the host you’re using. For example,
if you are using host bo720-1-01.dcs.gla.ac.uk to develop and test your server, connect to
http://bo720-1-01.dcs.gla.ac.uk:8080/index.html. Check that your server correctly
responds to requests for both valid and non-existing pages, and that you can see your test page displayed
in the browser.

Handling Multiple Sequential Connections

You will recall that the accept() function returns a file descriptor for the newly open connection,
leaving the file descriptor of the listening socket untouched. A server may therefore accept a new
connection, read the request, send its response, and close the connection, all without disturbing the
listening socket. Extend your web server to use this feature to accept and serve multiple connections, one
after the other, rather than exiting after serving a single connection. Don’t forget to set an appropriate
backlog in the listen() call, so multiple connections can be waiting.

Write a simple web site, comprising multiple HTML pages, for your server to host. Browse this site
using your favourite web browser to check that your server correctly responds to multiple requests.

Specifying the Content Type

Extend your website to include some images, in both JPEG and GIF format, linked from the HTML pages.
To make the browser recognise these images, you’ll need to include an appropriate Content-Type:
header in the response sent by your server. The Content-Type: should be chosen according to the
extension of the filename:

Filename: Content-Type:
⇤.html, ⇤.htm Content-Type: text/html
⇤.txt Content-Type: text/plain
⇤.jpg, ⇤.jpeg Content-Type: image/jpeg
⇤.gif Content-Type: image/gif
(unknown) Content-Type: application/octet-stream

You’ll need to parse the filename in the HTTP GET request to determine the extension, and then fill
in the Content-Type: appropriately when constructing your response.

4

Handling Multiple Requests per Connection

Forcing a web browser to open a new TCP connection for each request is inefficient when multiple files
are retrieved from a single web server. To avoid this inefficiency, HTTP allows several requests to be sent
on a single connection. If the server does not include a Connection: close header in its response,
the client can keep the connection open, and may send additional HTTP requests to the server. To allow
the client to distinguish data from multiple requests, the server must include a Content-Length:
header specifying the size of each response’s data in bytes. You can get the size of a file using fstat():

#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
...
struct stat fs;
int fd = open(filename, O_RDONLY);
...
if (fstat(fd, &fs) == -1) {

... // An error has occurred
}
printf("file size = %d\n", fs.st_size);

Update your web server to support multiple requests per connection, only closing the connection when
the client does so (the read() function will return zero when the connection is closed). Demonstrate
that this works using a standard web browser by printing details of each request handled by the server.

Handling Multiple Concurrent Connections: New Thread per Connection

A scalable web server will use multiple threads to allow it to process several requests concurrently, and to
make effective use of multicore systems. Using the pthreads API functions, introduce concurrency by
extending your server so that it starts a new thread to process each network connection accepted on a
socket. That is, call accept() in the main thread, then start a new thread to process the newly accepted
connection. The new thread must be passed a pointer to the file descriptor for the new connection as
a parameter in the pthread_create() call (take care to avoid race conditions). Once created, the
thread will process HTTP requests until the connection is closed by the client, then it will close the
connection socket, and exit. The main thread should remain open and accepting new connections.

Test your system to demonstrate that it can handle multiple connections in parallel. A web browser
will open multiple connections if you have enough content for it to fetch. Create a web page containing
several dozen images, and test concurrent browsing using this page (print the thread identifier, returned by
pthread_self() and filename when returning a response, to shows that it’s working concurrently).

Handling Multiple Concurrent Connections: Thread Pool

Starting a new thread for each connection can be inefficient, since threads take some time to start. A more
scalable approach creates a pool of worker threads before accepting any connections, and passes each
new connection to an idle thread in the pool. Such a system comprises a single controller thread that calls
accept(), along with a pool of worker threads. The file descriptor for a newly accepted connection
is passed to an idle worker. The controller thread blocks if there are no idle workers. Implement such
a system using pthreads to create the worker threads. Take care to provide appropriate locking when
manipulating condition variables shared between controller and workers. Ensure your workers block on
the condition variable while waiting for new work, rather than continually polling. Test your system, to
demonstrate that it works correctly.

5

Submission

Submissions must be made via Moodle. The deadline for submissions is 4:30pm on 6 March 2015. All
submissions must be written in C, and must run on the Linux machines in the level 3 laboratory. Each
submission must include Makefile to compile the code. Compiler warnings must be enabled (compile
with gcc -O2 -W -Wall -Werror or clang -O2 -W -Wall -Werror). Submissions must
comprise a single file called web-server.c together with a Makefile, called Makefile (note: capital
M). The Makefile must be written such that the default rule is to compile but not execute the submission.
A two-band penalty will be applied to submissions that do not meet these guidelines.

The file web-server.c must not exceed 500 lines, with no more than 80 characters per line. A
two-band penalty will be applied to submissions that do not meet these formatting guidelines. When run
on a correctly formatted submission, the output of wc -lL web-server.c (lower case ell, upper
case ell) will show something like 496 79 web-server.c where the first number is not larger than
500 and the second is not larger than 80.

You must submit an electronic copy of web-server.c and Makefile (do not include any other
files) archived as a .tar.gz file that expands into a directory named after your 7-digit matriculation
number (note: not your 7-digit matriculation number followed by the first letter of your name) followed
by “-submission1”. For example, if your matriculation number is 0301234, your archive should expand
to create a directory “0301234-submission1” with your files inside. You can create the archive using a
command such as:

tar cvzf 0301234-submission1.tar.gz 0301234-submission1/

Submissions will be processed by an automatic script. This relies on the correct naming and formatting
of the archives. Accordingly, a two-band penalty will be applied to submissions where the archive is
incorrectly constructed. Ask one of the lab demonstrators if you are unsure how to create the archive, and
they will show you how to do so. Check your archive from the command line. If it is formatted correctly,
you should see something like the following when running the tar ztf command:

$ tar ztf 0301234-submission1.tar.gz
0301234-submission1/Makefile
0301234-submission1/web-server.c
$

(the 0301234-submission1/ prefix shows that the archive expands into a subdirectory with the
appropriate name for this matriculation number).

Assessment

This exercise is assessed, and is worth 20% of the marks for this course. The marking scheme is attached,
and also available on Moodle, and you are encouraged to read and reflect on the marking scheme before
preparing your submission.

As per the Code of Assessment policy regarding late submissions, submissions will be accepted for
up to 5 working days beyond the deadline. Any late submissions will be marked as if submitted on time,
yielding a band value between 0 and 22. Then, for each working day (or part thereof) the submission is
late, the band value will be reduced by 2. Submissions received more than 5 working days after the due
date will receive an H (band value of 0).

Submissions that are not made via Moodle, that do not meet the formatting guidelines, or that are in
archives that do not meet the above guidelines will be penalised two bands. This penalty will be applied
in addition to any late submission penalty.

6

NS3$Summative$Exercise$1:$Mark$Sheet$
!
Marks!are!awarded!as!follows:!

!
Marks!are!deducted!for!the!following!general!issues:!
! Compiler!errors!or!warnings! ! 2!
! Excessive!abstraction;!over>engineering;!poor!design! ! 4!
! Use!of!global!variables! ! 2!
! Abuse!of!the!type!system! ! 2!
! Reinventing!standard!library!functions! ! 2!
! Buffer!overflows!or!other!security!problems! ! 2!
! Use!of!unallocated!memory/using!memory!after!free()!! ! 2!
! Missing!error!handling! ! 2!
! Code!duplication!and!repetition! ! 2!
! Deductions:! ! 20!

$

Mark%(out%of%50),%converted%to%percentage%and%translated%to%band:% ! !

Penalty%______________________%:% ! !

Final%Band:% ! !

General! Appropriate!use!of!functions!to!structure!the!code! ! 2!
Correct!indentation!and!formatting!of!code! ! 2!
Correct!Makefile! ! 2!

Basic!networking! Correct!use!of!socket(),!bind(),!listen(),!accept()! ! 4!
Reading!into!a!buffer!without!overflow! ! 2!
Correct!use!of!close()! ! 2!

Parsing!the!request! Correctly!parsing!request!(“GET!filename!HTTP/1.1”)! ! 2!
Correctly!parsing!and!checking!the!“Host:”!header;!
mark!deducted!for!assuming!header!in!fixed!location!

! 3!

Sending!a!response! Correctly!structuring!response!and!header!lines;!
building!response!without!buffer!overflow!

! 2!

Correctly!formatted!“200!Ok”!response! ! 2!
Correctly!sending!“404!Not!found”!response!! ! 2!
Detecting!errors;!sending!“400!Bad!request”!response! ! 2!
Correct!generation!and!use!of!the!content>type!header! ! 3!

Multiple!sequential!
connections!

Correctly!accepting!and!handling!multiple!connections!
on!each!socket!

! 1!

Multiple!requests!per!
connection!

Correctly!reading!and!parsing!each!complete!HTTP!
request!in!turn,!without!overflow.!

! 4!

Correctly!processing!multiple!requests!per!connection! ! 1!
Correct!use!of!fstat()!to!determine!response!size! ! 1!
Correctly!sending!a!correct!“Content>Length:”!header! ! 1!

Multiple!connections!
in!parallel!

Correct!use!of!pthreads!API!functions;!use!of!correct!
type!for!the!thread!function!

! 3!

Correctly!passing!connection!file!descriptor!to!threads;!
avoiding!the!race!condition!with!the!next!accept()!call!

! 2!

Correctly!setting!up!a!thread!pool! ! 3!
Correctly!passing!data!between!threads;!protected!by!a!
mutex!

! 2!

Correct!use!of!condition!variable!to!signal!availability!
of!data!

! 2!

! Base!mark:! ! 50!

