

Friday, May 16, 2008
2:30p.m. – 4:30p.m.

Duration: 2 hrs

University of Glasgow

DEGREES OF MSci, MEng, BEng, BSc, MA and MA (Social Sciences)

COMPUTING SCIENCE 3T:

NETWORKED SYSTEMS ARCHITECTURE 3

(Answer all 3 questions)

This examination paper is worth a total of 60 marks.

Summer Diet -2- Continued Overleaf/

1. (a) At the network layer, the Internet is a connectionless packet network, providing a
best-effort packet delivery service. By way of contrast, the traditional telephone
network provides a reliable circuit switched service. Discuss what are the
advantages and disadvantages of these two approaches to network design.

[6]

 (b) Many of the key design decisions of the Internet were influenced by the end-to-
end argument. With the aid of an example, briefly describe the end-to-end
argument as it applies to network protocol design.

[4]

(c) The Transmission Control Protocol (TCP) is designed to provide end-to-end
reliable delivery of data across an unreliable Internet Protocol (IP) network. To
achieve this, each transmitted data packet contains a sequence number, and the
receiver sends cumulative positive acknowledgements for packets as they are
received. The sender uses these acknowledgements to decide which packets have
been lost and should be retransmitted. Using diagrams to show transmission and
retransmission of data packets and acknowledgements, illustrate how TCP
behaves when:

(i) a single packet is lost in transit; and

(ii) when two consecutive packets are reordered in transit.

 Describe how TCP distinguishes these events, based on the acknowledgements.
[7]

 (e) TCP uses a sliding window scheme to provide congestion control, adapting the
window size to match the capacity of the network. If you were to use TCP to
download a large file from a server located on a high bandwidth network in New
York to your home computer in Glasgow, what would be the optimal window
size for TCP to choose, in bytes? Assume a network round trip time of
approximately 100ms, and a home ADSL connection with 8Mbps downlink
speed and 1Mbps uplink speed. Explain how you arrived at your answer.

 [3]

Summer Diet -3- Continued Overleaf/

2. (a) A key function of the data link layer in the OSI reference model is framing:
converting the raw bit-stream provided by the physical layer into a structured
communication channel which can be used by the upper layers. In order to
determine the start of a frame, many data link layer implementations use a start
code comprising the binary pattern 01111110. With reference to the properties of
the physical layer, explain why this bit pattern is commonly chosen as the start
code.

[4]

 (b) It is essential that the start code only appear at the beginning of a data link layer
frame, and not within the data. Discuss why this limitation exists, and explain
how the data link layer can prevent the start code occurring within the data, while
still allowing arbitrary data to be transferred.

[8]

 (c) Before data link layer frames can be used, it is necessary to check those frames
for errors that may have occurred during transmission. This check can be done in
a number of different ways, for example using a parity code, a checksum, or a
cyclic redundancy check (CRC), depending on the likelihood of errors.

(i) Discuss what physical processes might cause transmission errors, and how
these might affect the bit stream.

[2]

(ii) Explain what is a parity code, how it can be calculated, and how it can be
used to detect transmission errors.

[4]

(iii) Outline the advantages and disadvantages of using a parity code to detect
transmission errors, compared to using a checksum or a CRC.

[2]

Summer Diet -4- /END

3. (a) You have written a basic web server program in the laboratory sessions for this
course, using the C programming language, and the Berkeley Sockets API.
Outline the design of your web server, explaining the high-level structure of your
code, and highlighting how it uses the functions in the Berkeley Sockets API.

[12]

 (b) The Berkeley Sockets API makes use of the following three structs to pass
address information to the connect() and bind() functions:

struct sockaddr {
 uint8_t sa_len;
 sa_family_t sa_family;
 char sa_data[22];
};

struct sockaddr_in {
 uint8_t sin_len;
 sa_family_t sin_family;
 in_port_t sin_port;
 struct in_addr sin_addr;
 char sin_pad[16];
};

struct sockaddr_in6 {
 uint8_t sin6_len;
 sa_family_t sin6_family;
 in_port_t sin6_port;
 uint32_t sin6_flowinfo;
 struct in6_addr sin6_addr;
};

 A program using the Sockets API will create either a struct sockaddr_in or a
struct sockaddr_in6, but must pass a pointer to a struct sockaddr to the
connect() or bind() functions, casting as appropriate. Explain how and why
this works.

 [6]

 (c) An alternative design for the Sockets API might use a union instead of casting
between different types of struct. Outline how the data structures shown in part
(b) might look, if such a union were to be used.

[2]

