
The Presentation Layer

Networked Systems 3
Lecture 16

Presentation Issues

• Managing the presentation, representation, and
conversion of data:
• Media types and content negotiation

• Channel encoding and format conversion

• Internationalisation, languages, and character sets

• Common services used by many applications

2

Media Types

• Many data formats are not self-
describing

• Standard media types identify the
format of the data – signalled in
the protocol
• http://www.iana.org/assignments/media-types/

• Categorise formats into eight top-level types

• Each has many sub-types

• Each sub-type may have parameters

text/plain; charset=iso-8859-1

Type Sub-type Parameters

application

audio

video

text

image

message

model

multipart (attachments)

3

The MIME Framework

• Email originally specified for 7-bit ASCII text

• Multipurpose Internet Mail Extensions (MIME)
added support for other content types:
• Uses three new headers to identify content:

• Virtually identical mechanisms adopted by HTTP, etc.

MIME-Version: 1.0
Content-Type: text/plain; charset=iso-8859-1
Content-Transfer-Encoding: base64

4

Session Description Protocol

• A textual format to describe multimedia sessions
• Uses media types to specify media type, subtype, and parameters

5

v=0
o=csp 2890844526 2890842807 IN IP4 10.47.16.5
s=-
c=IN IP4 224.2.17.12/127
t=2873397496 2873404696
m=audio 49170 RTP/AVP 99
a=rtpmap:99 vorbis/44100/2
a=fmtp:99 configuration=AAAAAZ2f4g9NAh4aAXZvcmJpcwA...

audio/vorbis; configuration=AAAAAZ2f4g9NAh4aAXZvcmJpcwA...

Content Negotiation

• Multimedia sessions need to negotiate codecs
• A wide variety of codecs exist, and new codecs frequently introduced

• Two stage offer/answer model for negotiation
• Offer lists supported codecs in order of preference

• The receiver picks highest preference codec it also supports, includes this
in its answer

• Negotiates a common supported codec in one round-trip time

6

Offer/Answer Example

[Offer] v=0
 o=alice 2890844526 2890844526 IN IP4 atlanta.example.com
 s=
 c=IN IP4 atlanta.example.com
 t=0 0
 m=audio 49170 RTP/AVP 0 8 97
 a=rtpmap:0 PCMU/8000
 a=rtpmap:8 PCMA/8000
 a=rtpmap:97 iLBC/8000
 m=video 51372 RTP/AVP 31 32
 a=rtpmap:31 H261/90000
 a=rtpmap:32 MPV/90000

[Answer] v=0
 o=bob 2808844564 2808844564 IN IP4 biloxi.example.com
 s=
 c=IN IP4 biloxi.example.com
 t=0 0
 m=audio 49174 RTP/AVP 0
 a=rtpmap:0 PCMU/8000
 m=video 49170 RTP/AVP 32
 a=rtpmap:32 MPV/90000S

ou
rc

e:
 R

FC
 4

31
7

Receiver picks a subset of the media
subtypes – and their parameters – to
accept → includes them in the answer

7

Negotiation in Other Systems

• Similar negotiation frameworks exist in many other
systems
• An HTTP client can send an Accept: header listing media types it

understands; server will try to format response to match

• Email one of the few widely used applications
without format negotiation

8

Channel Encoding

• If the protocol is textual, how do you transport
binary data?
• Encode binary data in a textual format for transfer

• What is binary data? What is an appropriate textual format?

• Signal that the content has been encoded

• The MIME Content-Transfer-Encoding: header

• May require negotiation of an appropriate transfer encoding, if data
passing through several systems

9

What is Binary Data?

• Data that cannot be represented within the textual
character set in use
• If using 7 bit ASCII text, any data using all eight bits

• Example: very old versions of sendmail used the 8th bit to signal that
quoted data was present, stripping it off data on input, since email was
guaranteed to be 7 bit ASCII only

• If using EBCDIC, any unassigned character

• If using UTF-8, invalid multi-byte sequences

• Must be encoded to fit the character set in use

10

Coding Binary Data as Text

• Issues when designing a binary coding scheme:
• Must be backwards compatible with text-only systems

• Some systems only support 7-bit ASCII

• Some systems enforce a maximum line length

• Must survive translation between character sets

• Legacy systems using ASCII, national extended ASCII variants,
EBCDIC, etc.

• Must not use non-printing characters

• Must not use escape characters (e.g. $ \ # ; & “ ”)

11

Base 64 Encoding

• Standard encoding of
binary data to textual
format
• Encode 3 bytes (24 bits) into

four 6 bit values

• Represent those values as
printable characters as shown

• Pad to 3 byte boundary using
= characters

• Encode no more than 76
characters per line

12

000000 A 010000 Q 100000 g 110000 w

000001 B 010001 R 100001 h 110001 x

000010 C 010010 S 100010 i 110010 y

000011 D 010011 T 100011 j 110011 z

000100 E 010100 U 100100 k 110100 0

000101 F 010101 V 100101 l 110101 1

000110 G 010110 W 100110 m 110110 2

000111 H 010111 X 100111 n 110111 3

001000 I 011000 Y 101000 o 111000 4

001001 J 011001 Z 101001 p 111001 5

001010 K 011010 a 101010 q 111010 6

001011 L 011011 b 101011 r 111011 7

001100 M 011100 c 101100 s 111100 8

001101 N 011101 d 101101 t 111101 9

001110 O 011110 e 101110 u 111110 +

001111 P 011110 f 101111 v 111111 /

(pad) =

Base 64 Encoding

10010111 01001101 11101011 00001101 01110101Binary data: five bytes

100101 110100 110111 101011 000011 010111 010100Split into six bit chunks,
padding with zero bits

Encode, using look-up table, and pad l03rDXU==

Average 33% expansion of data (3 bytes → 4)

13

Quoting Binary Data

• If only a small amount of binary data, can be easier
to quote the non-textual values
• Use a special escape character to signal start of quote

• Signal value of un-representable data

• Two common approaches:
• MIME quoted printable

• URL encoding

14

Quoted Printable Encoding

• Convert occasional 8-bit values into a format that
can be represented in 7-bit ASCII
• The escape character is =

• The escape character is represented as =3d if it appears in the text

• Replace each 8-bit value with the escape character, followed by the
hexadecimal value of the byte being quoted

• E.g. the iso-8859-1 string straße is quoted as stra=dfe

15

URL Encoding

• URLs only permitted to contain alphanumeric
characters plus $-_.+!*’()
• All other characters must be encoded before the URL is used

• URL encoding similar to quoted printable, but uses
% as the escape character
• E.g. the iso-8859-1 string straße is quoted as stra%dfe

16

Internationalisation (i18n)

• What character set to use?
• A national character set? ASCII, iso-8859-1, koi-8, etc.

• Need to identify the character set and the language

• Complex to convert between character sets

• Unicode?

• A single character set that can represent (almost?) all characters, from
(almost?) all languages

• 21 bits per character (0x000000 – 0x10FFFF)

• Several representations (e.g. UTF-8, UTF-32)

• Just represents characters – still need to identify the language

17

Unicode and UTF-8

• Strong recommendation: Unicode in UTF-8 format
• UTF-8 is a variable-length coding of unicode characters

• Backwards compatible with 7-bit ASCII characters

• Codes in the ASCII range coded identically, all non-ASCII values are
coded with high bit set

• No zero octets occur within UTF-8, so it can be represented as a string
in C

• Widely used in Internet standard protocols

00000000 00000000 0zzzzzzz ! 0zzzzzzz
00000000 00000yyy yyzzzzzz ! 110yyyyy 10zzzzzz
00000000 xxxxyyyy yyzzzzzz ! 1110xxxx 10yyyyyy 10zzzzzz
000wwwxx xxxxyyyy yyzzzzzz ! 11110www 10xxxxxx 10yyyyyy 10zzzzzz

Unicode character bit pattern: UTF-8 encoding:

18

Unicode: Things to Remember

• Unicode just codes the characters, need to code
the language separately
• Different languages have very different rules!

• Is text written left-to-right or right-to-left?

• How to sort? e.g. in German, ä sorts after a, in Swedish, ä sorts after z

• How to do case conversion and case insensitive comparison? e.g., in
German, toupper(“straße”) = “STRASSE”

• How to handle accents? ligatures? ideograms? etc.

• At the protocol level:

• Code the characters as UTF-8 and specify the language

• Let the application-layer programmer worry about using the data!

19

Language Tags

• IETF maintains standard
for identifying languages
• Surprisingly complex!

• RFC 4646 describes syntax and
semantics of language tags, and
rules for how to register new tags
(59 pages)

• RFC 4647 explains how language
tags can be compared (20 pages)

• The list of registered languages is
separate

20

en-GB
English as used in Great Britain

zh-Hans-CN
Chinese written using the Simplified
script as used in mainland China

sl-IT-nedis
Slovenian as used in Italy, Nadiza
dialect

de-Latn-DE-1996
German, Latin script, orthography of
1996

Sending Raw Binary Data

• Many protocols send binary data directly, not
encoded in textual format
• E.g. TCP/IP headers, RTP, audio-visual data

• Two issues to consider:
• Byte ordering

• Byte size

21

Byte Order

• The Internet standard network byte order is big
endian
• Must convert data between host and network forms

#include <arpa/inet.h>

uint16_t htons(uint16_t hs);

uint16_t ntohs(uint16_t ns);

uint32_t htonl(uint32_t hl);

uint32_t ntohl(uint32_t nl);

• Frequent source of bugs, since Intel CPUs are little endian

22

Byte Size

• Early Internet protocols designed at a time when
not all machines used eight bit bytes
• Many protocols use the term octet for precision, when talking about eight

bit values

• Generally possible to ignore the distinction now…

• But… How big is an integer? 16, 32, or 64 bits
How is a floating point value represented? Still
need careful specification

23

Questions?

24

