
Congestion Control

Networked Systems 3
Lecture 14



Lecture Outline

• Congestion control principles

• Congestion control in the Internet
• TCP congestion control

• Alternative approaches

2



• Adapting speed of transmission to match available 
end-to-end network capacity
• Analogous to flow control on a single link

• Preventing congestion collapse of a network

What is Congestion Control?

3

Packets Sent

P
ac

ke
ts

 D
el

iv
er

ed Maximum capacity

Congestion collapse
No useful work done

Occurred in the Internet in 
1986, before congestion 
control added



Network or Transport Layer?

• Can implement congestion control at either the 
network or the transport layer
• Network layer – safe, ensures all transport protocols are congestion 

controlled, requires all applications to use the same congestion control 
scheme

• Transport layer – flexible, transports protocols can optimise congestion 
control for applications, but a misbehaving transport can congest the 
network

4



Congestion Control Principles

• Two key principles, first elucidated by Van 
Jacobson in 1988: [“Congestion Avoidance and Control”, Proc. ACM SIGCOMM’88]

• Conservation of packets

• Additive increase/multiplicative decrease
in sending rate

• Together, ensure stability of the network

5

Van Jacobson

S
ou

rc
e:

 P
A

R
C



Conservation of Packets

• The network has a certain capacity
• The bandwidth x delay product of the path

• When in equilibrium at that capacity, send one 
packet for each acknowledgement received
• Total number of packets in transit is constant

• “ACK clocking” – each acknowledgement “clocks out” the next packet

• Automatically reduces sending rate as network gets congested and 
delivers packets more slowly

6



AIMD Algorithms

• Adjust sending rate according to an additive 
increase/multiplicative decrease algorithm
• Start slowly, increase gradually to find equilibrium

• Add a small amount to the sending speed each time interval without 
loss

• For a window-based algorithm wi = wi-1 + α each RTT, where α = 1 
typically

• Respond to congestion rapidly

• Multiply sending window by some factor β < 1 each interval loss seen

• For a window-based algorithm wi = wi-1 × β each RTT, where β = 1/2 
typically

• Faster reduction than increase → stability

7



How to Adapt Transmission?

• For sliding window protocols:
• Acknowledge each packet, only send new data when an 

acknowledgement received

• Adjust size of window, based on AIMD rules

• Other types of protocol should do something similar

8



Congestion in the Internet

• Congestion control provided by transport layer
• Dominant protocol is TCP

• Others try to be “TCP Friendly”

• Network layer signals congestion to transport
• Packets discarded on congestion

• Note: implications for wireless Internet

• Modern TCP also has ECN bits, but not widely used

9



TCP Congestion Control

• TCP is a sliding window protocol, measuring the 
window size in bytes
• Plus slow start and congestion avoidance

• Gives an approximately equal share of the bandwidth to each flow sharing 
a link

• “The world’s most baroque sliding-window protocol” – Lloyd Wood

10



TCP Congestion Control

20191817161514131211109877 8 9 10 11 12 13 14 15 16 17 18 19 20

Sender

Tim
e

Receiver

Tim
e

6543211 2 3 4 5 61 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 197 8 9 10 11 12 13 14

• Sliding window protocols used at 
the data link layer – ensure full 
utilisation of a link

• Also used at transport layer – 
ensure full utilisation of a path

• Problem: how to size the window?
• Unlike at the link layer, you don’t know the 

bandwidth x delay product of the path

11



TCP Congestion Control

• Issues with transport layer sliding window 
protocols:
• How to choose initial window?

• How to find the link capacity?

• Slow start to estimate the bottleneck link capacity

• Congestion avoidance to probe for changes in capacity

12



Choosing the Initial Window

• How to choose initial window size, Winit?
• No information → need to measure path capacity

• Start with a small window, increase until congestion

• Winit of one packet per round-trip time is the only safe option – 
equivalent to a stop-and-wait protocol – but is usually overly 
pessimistic

• TCP uses a slightly larger initial window: 
Winit = min(4 × MSS, max(2 × MSS, 4380 bytes)) packets per RTT

• Example: an Ethernet with MTU of 1500 bytes, TCP/IP headers of 40 
bytes → Winit = min(4 × 1460, max(2 × 1460, 4380)) = 4380 bytes = 3 
packets per RTT

MSS = Maximum Segment Size 
(MTU minus TCP/IP header size)

13



Finding the Link Capacity

• The initial window allows you to send

• How to choose the right window size to match the 
link capacity? Two issues:
• How to find the correct window for the path when a new connection starts 

– slow start

• How to adapt to changes in the available capacity once a connection is 
running – congestion avoidance

14



Slow Start

• Initial window, Winit = 1 packet per RTT
• Or similar… a “slow start” to the connection

• Need to rapidly increase to the correct value for the 
network
• Each acknowledgement for new data increases the window by 1 packet 

per RTT

• On packet loss, immediately stop increasing window

15



Slow Start

Sender Receiver

• Two packets generated per 
acknowledgement

• The window doubles on every 
round trip time – until loss occurs

• Rapidly finds the correct window 
size for the path

16



Congestion Avoidance

• Congestion avoidance mode used to probe for 
changes in network capacity
• E.g. is sharing a connection with other traffic, and that traffic stops, 

meaning the available capacity increases

• Window increased by 1 packet per RTT
• Slow, additive increase in window: wi = wi-1 + 1

• Until congestion is observed → respond to loss 

17



Detecting Congestion

• TCP uses cumulative positive ACKs → two ways to 
detect congestion
• Triple duplicate ACK → packet lost due to congestion

• ACKs stop arriving → no data reaching receiver; link has failed 
completely somewhere

• How long to wait before assuming ACKs have stopped?

• Trto = max(1 second, average RTT + (4 x RTT variance))
• Statistical theory: 99.99% of data lies with 4σ of the mean, assuming normal distribution 

(where variance of the distribution = σ2)

18



Responding to Congestion

• If loss detected by triple-duplicate ACK:
• Transient congestion, but data still being received

• Multiplicative decrease in window: wi = wi-1 × 0.5

• Rapid reduction in sending speed allows congestion to clear quickly, 
avoids congestion collapse

19



Responding to Congestion

• If loss detected by time-out:
• No packets received for a long period of time – likely a significant problem 

with network (e.g., link failed)

• Return to initial sending window, and probe for the new capacity using 
slow start

• Assume the route has changed, and you know nothing about the new 
path

20



Congestion Window Evolution 

21

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

C
on

ge
st

io
n 

W
in

do
w

 (s
eg

m
en

ts
)

Time (RTT)

Slow start Congestion avoidance

Typical evolution of TCP window, assuming Winit = 1

Converge on 
fair share of the 
path capacity



The Limitations of TCP

• TCP assumes loss is due to congestion
• Too much traffic queued at an intermediate link → some packets dropped

• This is not always true:

• Wireless networks

• High-speed long-distance optical networks

• Much research into improved versions of TCP for wireless links

22



Other Congestion Control

• TCP is not appropriate for all applications

• But need to be TCP Friendly:
• Avoid congestion collapse

• Avoid gratuitous unfairness

• Streaming media applications prefer something 
with a smoother response function
• Lots of research ongoing, but no accepted standards

23



Questions?

24


