

Communications Theory

Networked Systems 3 Lecture 4

Lecture Outline

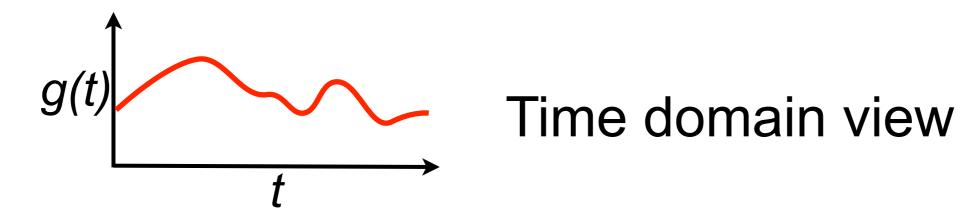
- Information content of signals
- Capacity of a channel
- Physical limits of communication

Information Theory

- Recall: communication happens when a signal is conveyed between source and destination via a channel
 - The channel has limited capacity
 - The amount of *information* in the signal determines if it will fit the channel
 - How to determine the amount of information in a signal, and the capacity of a channel?

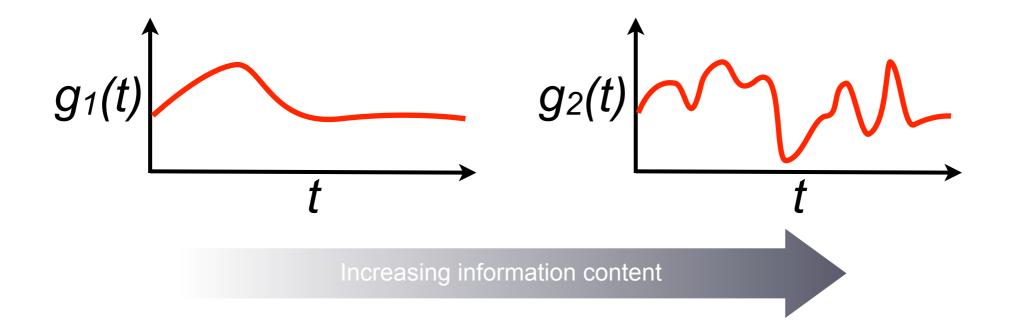
How are Signals Conveyed?

- Sender varies a physical property of the channel over time; receiver measures that property:
 - Voltage or current in an electrical cable
 - Modulation of a radio carrier
- Model as a mathematical function, g(t)



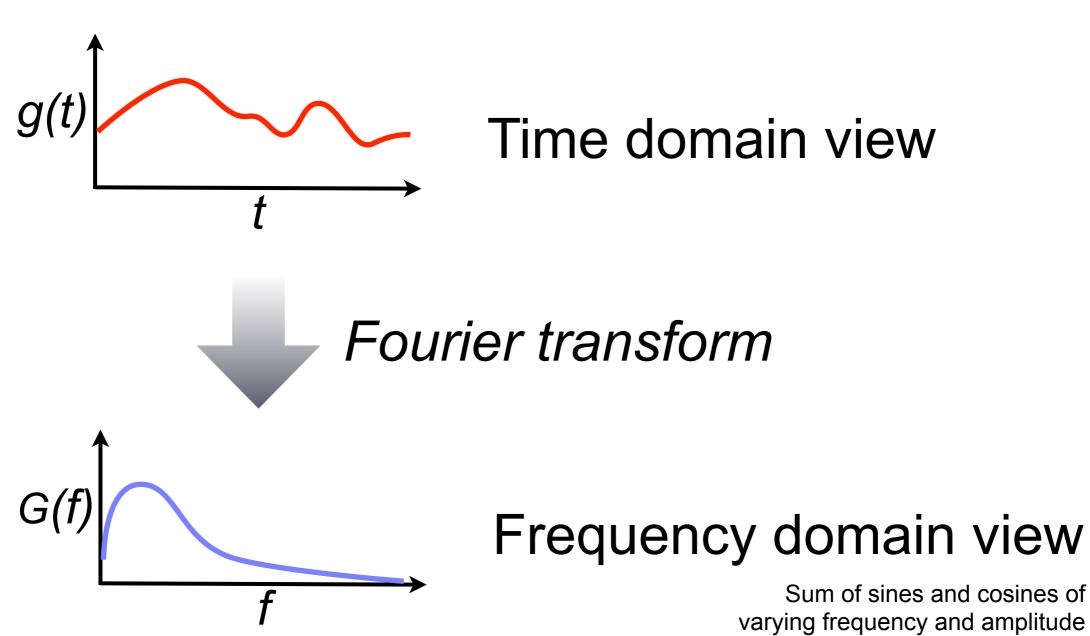
Information Content

Intuition: a more complex signal carries more information



Use frequency domain analysis to demonstrate this mathematically

Time and Frequency Domains

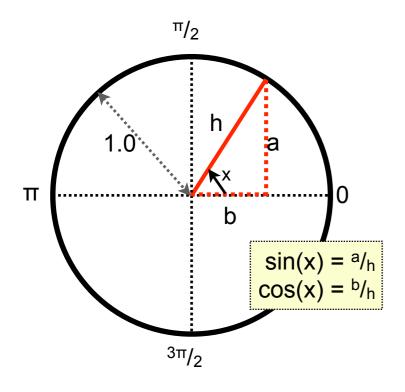


Complex signal → high frequency components [compare to music]

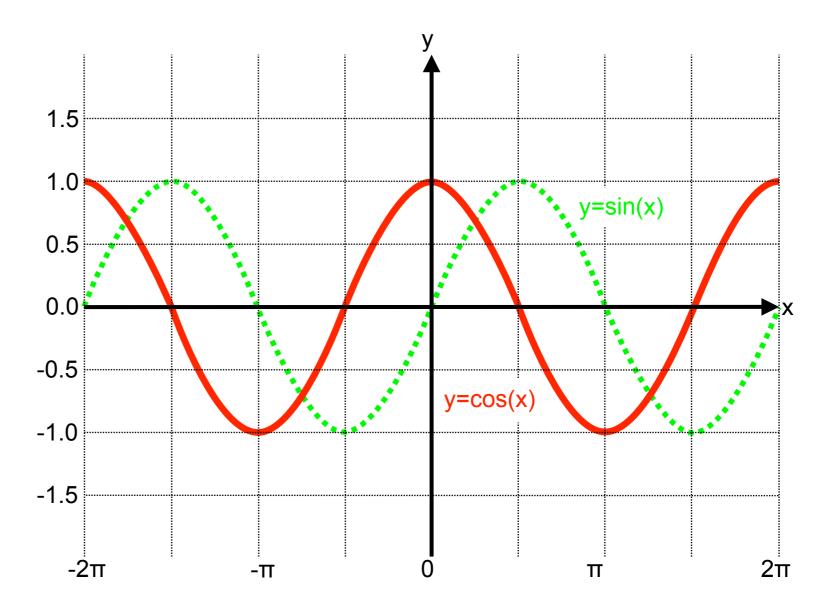
Frequency domain view

varying frequency and amplitude

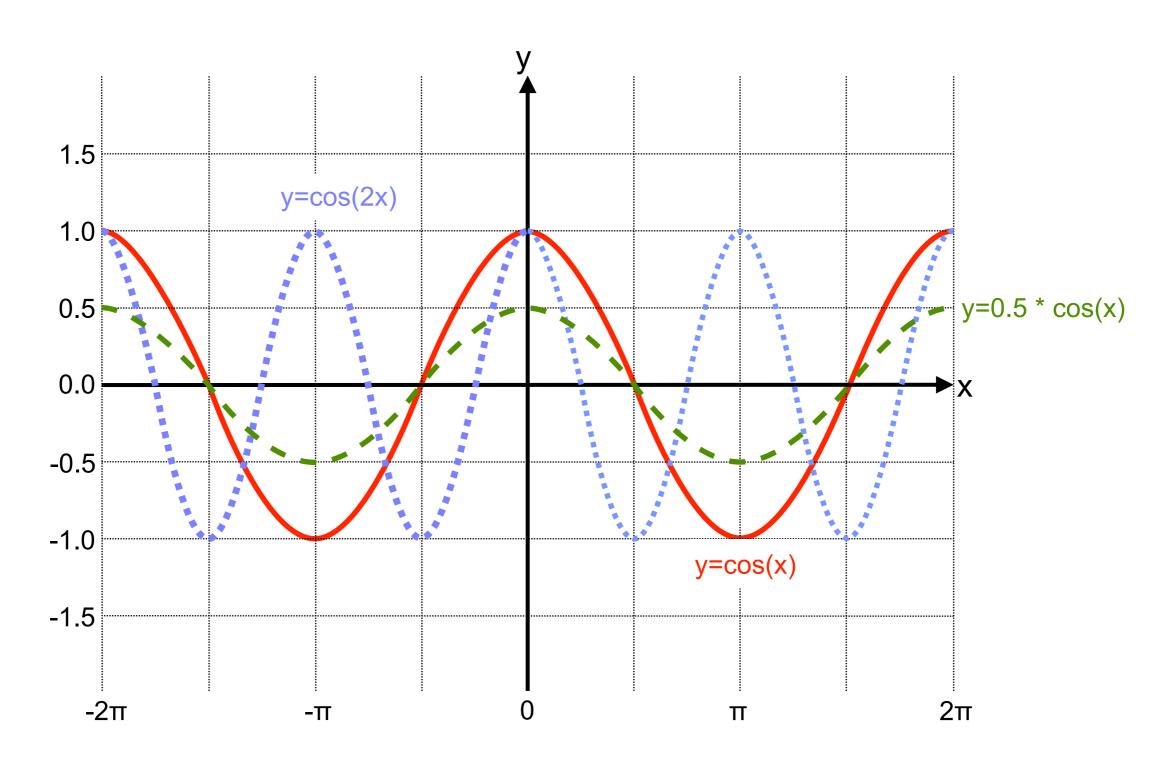
Sines and Cosines



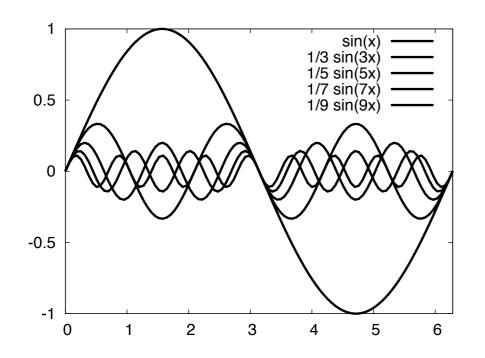
Sine wave: basis of frequency domain analysis

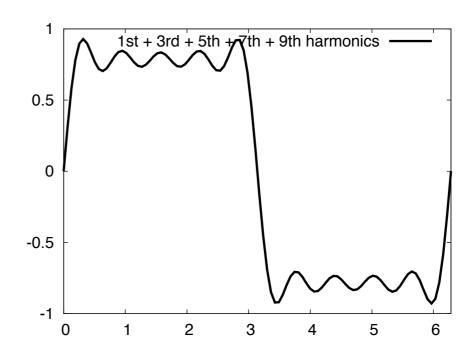


Frequency and Amplitude



Addition of Sine Waves





Can build more complex waveforms by adding together a sequence of sine waves

Infinite sequence: more harmonics → more accuracy

Fourier Analysis

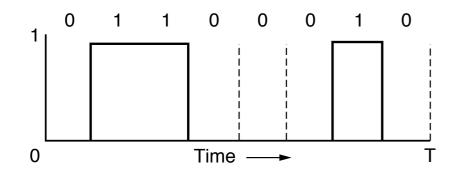
- Any well behaved periodic function can be constructed by summing a (possibly infinite) number of sines and cosines of varying frequency and amplitude
 - The *frequency domain* representation

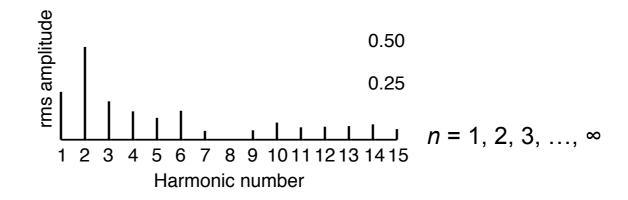
Jean Baptiste Joseph Fourier,

$$g(t) = \frac{1}{2}c + \sum_{n=1}^{\infty} a_n sin(2\pi n f t) + \sum_{n=1}^{\infty} b_n cos(2\pi n f t)$$
Amplitude Frequency

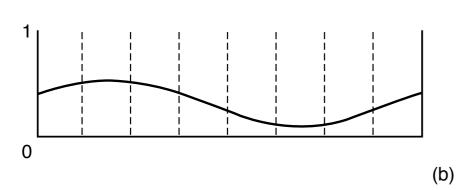
Fourier Analysis: Example (1)

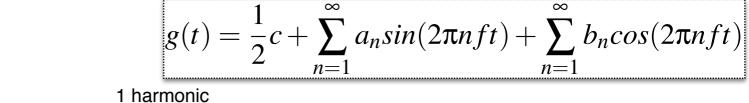
(a)



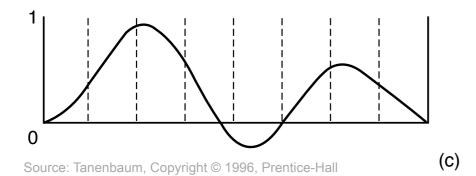


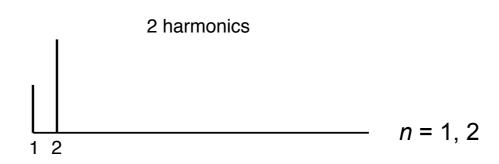
ASCII character "b"





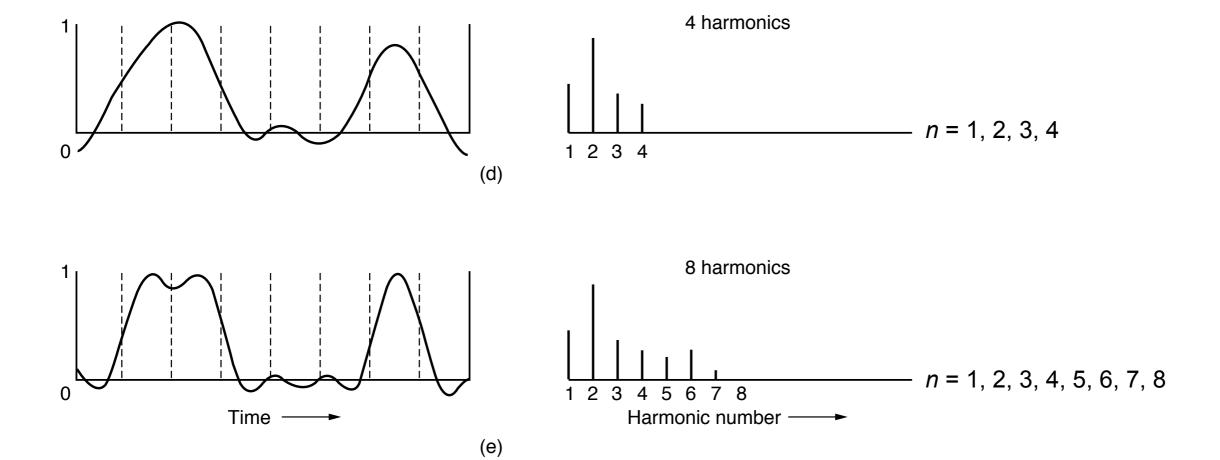
n = 1





Fourier Analysis: Example (2)

Source: Tanenbaum, Copyright © 1996, Prentice-Hall



Including more high frequency components (high harmonics) gives a more accurate representation

Information Content

- Frequency domain view allows us to visualise information content of a signal
 - More information → high frequency components
 - Limiting frequency range distorts signal alternatively signal content defines needed frequency range

Channel Bandwidth Limits

- Real channels cannot pass arbitrary frequencies
 - Fundamental limitations based on physical properties of the channel, design of the end points, etc.
 - The channel *bandwidth*, *H*, measures the frequency range (Hz) it can transport
- Implication: a channel can only convey a limited amount of information per unit time

Capacity of a Perfect Channel

- Bandwidth tells highest frequency that can be passed: analogue signal
- What about digital signals?
 - $R_{max} = 2H \log_2 V$
 - R_{max} = maximum data rate (bits per second)
 - H = bandwidth
 - V = number of discrete values per symbol
 - Assumption: noise-free channel

Harry Nyquist, 1889-1976

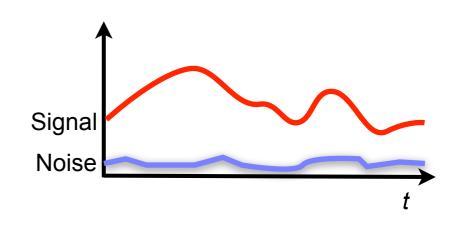
n	log ₂ (<i>n</i>)
1	0.00
2	1.00
4	2.00
8	3.00

Noise

- Real world channels are subject to noise
- Many causes of noise:
 - Electrical interference
 - Cosmic radiation
 Different noise spectra
 - Thermal noise
- Corrupts the signal: additive interference

Signal to Noise Ratio

 Can measure signal power, S, and noise power, N

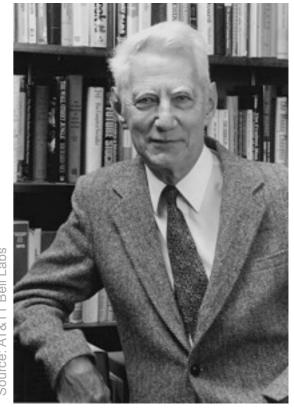


- Gives signal-to-noise ratio: S/N
 - Typically quoted in decibels (dB), not directly
 - Signal-to-noise ratio in dB = 10 log₁₀ S/N

S/N	dB
2	3
10	10
100	20
1000	30

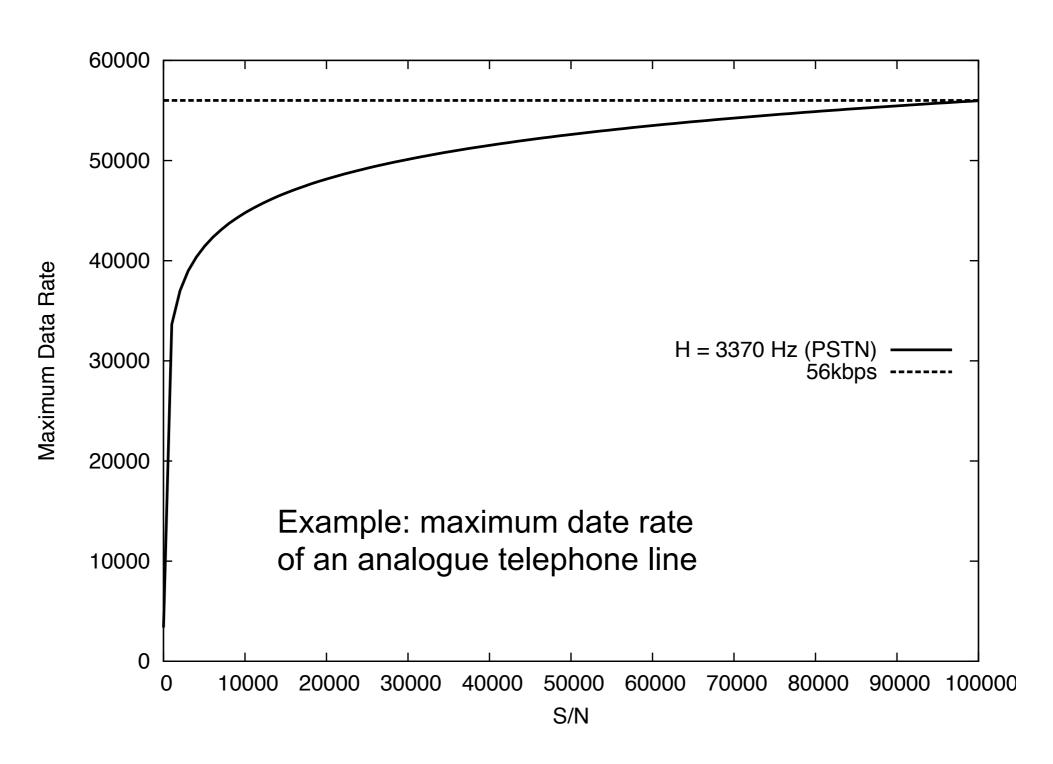
Capacity of a Noisy Channel

- $\bullet \quad R_{max} = H \log_2(1 + S/N)$
 - R_{max} = maximum data rate (bits per second)
 - H = bandwidth
- Note:
 - Channel subject to white noise
 - Irrespective of number of discrete values per symbol



Claude Shannon, 1916-2001

Capacity of a Noisy Channel



Implications

- Physical characteristics of channel limit amount of information that can be transferred
 - Bandwidth
 - Signal to noise ratio
- These are fundamental limits: might be reached with careful engineering, but cannot be exceeded

Questions?

